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Composite helical structures (CHSs) can store and release strain energy through elastic deformation, which
have been used in automobile and aerospace structures. The compressive stiffness to weight ratio is the core
in the design of these structures, requiring an optimal geometric configuration. Seven state‐of‐the‐art
Genetic Algorithms were employed and benchmarked to optimise two conflicting objectives, maximising the
compressive stiffness while minimising the weight. All design variables that having effects on the compressive
stiffness and weight of CHSs had been considered, which are the helix angle, the number of active coils, the
helix diameter, the outer and inner diameter of cross‐section, and the ply angle. A quantitative analysis
method, mimicked inverted generational distance (mIGD), was used to determine the best practice of
Genetic Algorithms. This study shows the selection of the Genetic Algorithm is crucial and multi‐objective evo-
lutionary algorithm based on decomposition (MOEA/D) is the best solver on searching the designs of the max-
imum compressive stiffness and the minimum weight.
1. Introduction

Helical structures can store strain energy to a specified displace-
ment when load is applied, and they are widely employed at all scales
in engineering. For example, the helical structures have been used as a
deployable antenna to receive and transmit signals in the aerospace
field [1–3] and they also have been used as a shock‐absorbing spring
in the automobile field to provide a comfortable ride to passengers
[4,5]. Although the traditional helical structures have been widely uti-
lised, their further development is approaching the ceiling due to their
high weight, high noise and short service life. Since fibre rein-
forced composites have better ability of storing and releasing elastic
strain energy, higher strength and lighter weight than metallic materi-
als, they are adopted to replace the traditional helical structures. The
topology of a composite helical structure (CHS) is shown in Fig. 1a.
The six geometric parameters (i.e. the helix angle, the number of
active coils, the helix diameter, the outer diameter and the inner diam-
eter of cross‐section, and the ply angle) significantly affect the com-
pressive stiffness and the weight of CHSs, which have been
demonstrated by Liu et al. [1].

Genetic Algorithms (GAs) become the most popular tools for find-
ing optimal composite designs in composite optimisation literature
in the last 30 years [6–10]. In 1997, Yokota et al. [11] first utilised
a single objective Genetic Algorithm to solve the non‐linear integer
programming problem of minimising the weight of metallic helical
structures. Taktak et al. [12] developed a dynamic optimisation
method by using a single objective Genetic Algorithm to respectively
optimise the weight and the natural frequency of helical structures.
Zhan et al. [13] achieved the optimal design of a CHS by using a single
objective Genetic Algorithm and a response surface model. Compared
with the metallic helical structure, the weight of the CHS was reduced
by 34.4%. Although these studies obtained optimal designs through
their single objective optimisation studies, their design solutions are
not guaranteed to simultaneously satisfy other requirements. In addi-
tion, the relationship between the domain and the codomains are
not discussed in these articles. The current composite literature
has shown an increasing number of studies on multi‐objective
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Nomenclature

d0 inner diameter of cross‐section, mm
d1 outer diameter of cross‐section, mm
d ν;Oð Þ the minimum Euclidean distance between ν and the points

in O
D1 helix diameter, mm
Ex elastic modulus of composite in tangential direction, GPa
Gxy shear modulus of composite in the x‐y direction, GPa
K compressive stiffness of CHSs, N/m
m number of iterative calculations until CHSs fail
M� a set of points along the mimicked Pareto front
n number of iterative calculations until the maximum com-

pressive displacement of CHSs is reached without failure
N1 number of active coils
O a set of points from the currently obtained Pareto front
Pm compressive failure load of the CHS, N
Pk accumulative compressive load of the CHS, N
Pn compressive load corresponding to the maximum displace-

ment of the CHS, N
P
�

mean compressive load of the CHS in the direction of helix
axis, N

w weight of CHSs, g

α1 helix angle, deg
θ ply angle, deg
ρ density of composite, g/cm3

δk accumulative height variation of the CHS, mm
δ
�

mean compressive deformation of the CHS in the direction
of helix axis, mm

δmax the maximum compressive displacement of the CHS, mm
ν one of the points in the setM�

CHS composite helical structure
CNLPP constrained non‐linear programming problem
GA Genetic Algorithm
CEC’09 IEEE congress on evolutionary computation 2009
mIGD mimicked inverted general distance
MLSU multilevel selection unified method
MLSGA multi‐level selection genetic algorithm
MS2L multi‐scale two‐level
MOEA/D multi‐objective evolutionary algorithm based on decompo-

sition
MTS multiple trajectory search
NSGA‐II nondominated sorting genetic algorithm
SPEA‐II strength pareto evolutionary algorithm
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optimisation of CHSs. In order to replace the traditional metallic heli-
cal structure in automobile field, Zebdi et al. [14] used a multi‐
objective Genetic Algorithm, nondominated sorting Genetic Algorithm
(NSGA‐II), to optimise a CHS and they found the best solution set (i.e.
Pareto front). The results show that the population size does not influ-
ence the optimal solution, which allows designers to improve compu-
tational efficiency by reducing the population size. To obtain the
maximum compressive stiffness and the minimum weight of CHSs,
Ratle et al. [15] and Gobbi and Mastinu [16] both used NSGA‐II to
optimise the CHSs. The design solutions were verified by experimental
results. However, these studies have several deficiencies. First, they
have not investigated the optimal designs of CHSs that having helix
angle over 10°. However, a deployable composite helical antenna often
requires a large deformation space (i.e. α1 > 10°). Therefore, it is nec-
essary to increase the range of the helix angle. Second, there is ‘no free
lunch’. If an algorithm exhibits high performance on solving a category
of problems, its performance will be inevitably degraded on solving
other problem types. However, the current literatures have not deter-
mined the best practice for finding the designs of the maximum com-
pressive stiffness and the minimum weight of CHSs. NSGA‐II is
frequently employed to solve this problem, which is possibly due to
its popularity and averagely satisfied performance on most problems
as a general solver. Third, Wang and Sobey [17] pointed out that
the composite optimisation works in the past ten years generally did
not treat Genetic Algorithms as a specialisation. This problem is also
found in the optimisation of CHSs. The best practice of Genetic Algo-
rithms, a full spectrum of Pareto front and resolved solutions of the
problem have not been investigated.

Due to the lack of studies, it is difficult to evaluate how close the
currently available design solution is to the best solution. Furthermore,
the best practice of Genetic Algorithms on solving this problem and the
optimal designs for large deformation of CHSs, where α 1 > 10°,
remain unknown from the current composite literature. Therefore, it
is necessary to determine the optimal geometric configuration of CHSs
and to obtain the optimal designs of CHSs through benchmarking the
state‐of‐the‐art Genetic Algorithms. Generally, the extreme value of
the objective can be obtained by solving the derivative of the analyti-
cal formula and further explore the best solution. However, for the
compressive stiffness of CHSs, the analytical model proposed by Liu
et al. [1] considers the geometric nonlinearity effect when determines
the load‐displacement relationship by accounting accumulative com-
2

pressive load increment and accumulative compressive deformation
increment. The compressive stiffness of CHSs is obtained by using lin-
ear fitting with least square method. Therefore, gradient‐based optimi-
sation methods are not applicable. The composite literature shows that
CHSs have good properties and application prospects [18–20], but
there is no consensus on which design solution provides optimal per-
formance (such as the maximum compressive stiffness and minimum
weight). Montemurro and his co‐authors [21–24] developed an effec-
tive multi‐scale two‐level (MS2L) optimisation methodology for
searching the optimal designs of composite structures. The optimisa-
tion problem is split into two‐scale sub‐problems and formulated in
the form of a constrained non‐linear programming problem (CNLPP).
The MS2L optimisation methodology has been utilised to solve multi-
ple realistic engineering problems [21–24]. However, the optimisation
problem in this paper is a multi‐objective optimisation problem solely
based on the macroscopic scale of CHSs. Therefore, the MS2L optimi-
sation methodology was not utilised to solve the optimisation problem
of this research. In this paper, seven multi‐objective Genetic Algo-
rithms were benchmarked to solve the multi‐objective optimisation
problem of the compressive stiffness and the weight of CHSs. Arbitrary
helix angle was set in the optimisation problem to find the optimal
design solutions of CHSs that satisfying the requirement of large defor-
mation applications. The Genetic Algorithms employed for the bench-
marking include: two most popular solvers, NSGA‐II and strength
pareto evolutionary algorithm (SPEA‐II); a specialist unconstrained
solver, multi‐objective evolutionary algorithm based on decomposi-
tion (MOEA/D); one population based local search method, multiple
trajectory search (MTS), which performs well on both unconstrained
and constrained problems; and a recently developed multi‐level selec-
tion genetic algorithm (MLSGA) specifically for constraint problems
and the hybrid MLSGA which is suitable for problems with wide‐
range or discontinuous codomains, including MLSGA‐NSGAII and
MLSGA‐MOEA/D. In the current research, each algorithm was inde-
pendently run 30 cycles to eliminate the influence of the randomness
of the initial population. The best practice of Genetic Algorithms was
quantitatively determined by using mimicked inverted general dis-
tance (mIGD).

The paper is organised as follows: the mathematical formulations
for the compressive stiffness and the weight of CHSs are detailed in
Section 2; the optimisation problem formulation and the seven state‐
of‐the‐art Genetic Algorithms are introduced in Section 3; the
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Fig. 1. Geometric configuration and compressive deformation process of a CHS [1].
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benchmarking results of seven Genetic Algorithms are summarised in
Section 4; the best practice and the relationship between the domain
and the codomains are discussed in Section 5; the key findings have
been concluded in Section 6.

2. Analytical solution for compressive stiffness and weight of
composite helical structures

Based on the energy principle, Liu et al. [1] proposed an analytical
model for predicting the compressive stiffness of CHSs considering
geometric nonlinearity effect. The overall appearance of CHSs is heli-
cal shape and the cross‐section of helix is hollow circular. The compos-
ite used to prepare CHSs can be unidirectional reinforced composite or
3

two‐dimensional fabric composite (shown in Fig. 1a). Frenet unit vec-
tors (i.e. x, y, z = tangential, normal and binormal unit vectors) are
used to describe the ply angles of CHSs. In the geometric model, the
geometric parameters of CHSs change continuously with the increase
of compressive load, shown in Fig. 1b. The load–displacement relation-
ship considering geometric nonlinearity is deduced by accumulative
compressive load increment and accumulative compressive deforma-
tion increment. The compressive stiffness of CHSs is obtained using
linear fitting with least square method.

The details of the analytical model are referred to Liu et al. [1].
When the maximum compressive displacement of a CHS is reached
without failure (shown in Fig. 1b), its compressive stiffness can be
obtained by using Eq. (1),



Fig. 2. General benchmarking procedure.
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K ¼
∑n

k¼1 δk � δ
�� �

Pk � P
�� �

∑n
k¼1 δk � δ

�� �2 Reaching δmaxð Þ; ð1Þ

where δ
�
and P

�
are respectively the mean compressive deformation and

the mean compressive load of the CHS in the direction of helix axis, δk
and Pk are the accumulative height variation and the accumulative
compressive load of the CHS and δmax is the maximum compressive dis-
placement of the CHS defined by Liu et al. [1], while n is the number of
iterative calculations until the maximum compressive displacement of
the CHS is reached without failure.

Liu et al. [1] compared the prediction results with the compressive
stiffness of a CHS prepared by M40/epoxy648 [25] and a CHS pre-
pared by E‐glass/epoxy [16]. The relative deviations are respectively
11.35% and 0.79%, indicating that the analytical model provides an
adequate accuracy for the prediction of compressive stiffness of CHSs.

The weight of a CHS is expressed in Eq. (2) as,

w ¼ π2 d21 - d20
� �

N1ρD1

4cosα1
; ð2Þ

where ρ is the density of composite, d1 and d0 are respectively the outer
diameter and the inner diameter of cross‐section, whilst N1, D1 and α1

are respectively the number of active coils, the helix diameter and the
helix angle.

When a CHS is compressed to closely contact with two adjacent cir-
cles without failure, the maximum compressive displacement, δmax, can
be obtained from the initial geometric configuration of the CHS [1] in
Eq. (3) as,

δmax ¼ N1πD1tanα1 � N1d1: ð3Þ
The compressive load corresponding to the maximum displacement

of a CHS is determined by using Eq. (4) as [1],

Pn ¼ N1πD1tanα1 � N1d1ð Þ ∑
n

i¼1

8NiD3
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where Ex and Gxy are the elastic modulus of composite in the tangential
direction and the shear modulus of composite in the x‐y direction
respectively. Ex and Gxy are determined by the properties of composites
and the ply angle, θ. For more details about Ex and Gxy, the reader is
addressed to [1].

According to the classical Tsai‐Hill criterion, the compressive
strength of a CHS is obtained as follows [1]:

Pm ¼
X - 2 C2

1 cos4θ � sin2θcos2θ
� � þ 8C2

2sin
2θcos2θ þ C1C2 6sinθcos3θ � 2sin3θcosθ

� �� �
þ Y - 2 C2

1sin
4θ þ 4C2

2sin
2θcos2θ � 4C1C2sin3θcosθ

� �
þ S - 2 C2

1sin
2θcos2θ þ C2

2 sin4θ þ cos4θ � 2sin2θcos2θ
� �� �

8><
>:

9>=
>;

- 0:5

;

ð5Þ
where X is the longitudinal tensile or compressive strength of compos-
ite, Y is the transverse tensile or compressive strength of composite, S is
the in‐plane shear strength of composite, m is the number of iterative
calculations until the CHS fail, while C1 α1;D1; d1; d0; θð Þand
C2 α1;D1; d1; d0; θð Þare the transformation variables.

The reader is addressed to previous work [1] for a detailed expla-
nation of K, δmax, Pn and Pm.

3. Methodology

Wang et al. [17,26] stated that the benchmarking process is neces-
sary when the shape of the codomains and its relationship with the
domain is unknown. For the optimisation of CHSs, the benchmarking
process helps understand the problem and gives the best practice of
Genetic Algorithms. The multi‐objective problem formulated in this
paper is a non‐linear constrained optimisation problem in terms of
4

geometrical variables. Its non‐linearity is due to the nature of the
objective functions as shown in Eqs. (1) and (2), which are obtained
through iterative calculations. In addition, the complexity of the prob-
lem is further improved by the geometrical constraint (i.e. the helix
angle, the number of active coils, the helix diameter, the outer diam-
eter of cross‐section) shown in Eq. (3) and the mechanical constraint
(i.e. the compressive strength is not reached) shown in Eqs. (4) and
(5). Therefore, it is difficult to precisely select specific solvers accord-
ing to the nature of the objective functions. In this case, the bench-
marking results from IEEE congress on evolutionary computation
2009 (CEC’09) [27] were used to select the algorithms for the optimi-
sation of the compressive stiffness and the weight of CHSs. NSGA‐II
and SPEA‐II have generally good performance across all problem sets,
MOEA/D performs the best on solving unconstrained problems, and
one population based local search method, MTS, which comes the sec-
ond and third on solving unconstrained and constrained problems. In
addition, a recently developed Genetic Algorithm, MLSGA, was also
included since it performs well on solving constrained problems.
Hybrid MLSGAs which are suitable for wide‐range or discontinuous
codomains problems were employed in this study, including MLSGA‐
NSGAII and MLSGA‐MOEA/D. A general diagram of the benchmarking
process is shown in Fig. 2. All individuals from the population were
evaluated through the analytical model of the compressive stiffness
and the weight of CHSs.

3.1. Formulation of multi-objective optimisation problem

For a confirmed type of CHSs, the analytical model proposed by Liu
et al. [1] only requires six geometric parameters to determine their
compressive stiffnesses and weights. Therefore, a multi‐objective opti-
misation problem was formulated with the six design variables. Two
constraints were set, including CHSs can be compressed to the maxi-
mum compressive displacement and the compressive strength is not
reached.

Concerning the geometrical design variables, they are (Fig. 1):

• the helix angle, α1;
• the number of active coils, N1;
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• the helix diameter, D1;
• the outer diameter of cross‐section, d1;
• the inner diameter of cross‐section, d0;
• the ply angle, θ.

The multi‐objective optimisation problem of CHSs was formulated
in a constrained format in Eq. (6) as,

min J α1;N1;D1; d1; d0; θð Þ ¼ 1=K α1;N1;D1; d1; d0; θð Þ;w α1;N1;D1; d1; d0ð Þ½ �;
subjectto :

h α1;N1;D1; d1ð Þ ¼ δmax α1;N1;D1; d1ð Þ � N1πD1tanα1 � N1d1ð Þ ¼ 0;

g α1;N1;D1; d1; d0; θð Þ ¼ 1� Pm α1 ;D1 ;d1 ;d0 ;θð Þ
Pn α1 ;N1 ;D1 ;d1 ;d0 ;θð Þ ⩽ 0;

( ð6Þ

where h α1;N1;D1; d1ð Þ is the constraint that CHSs can be compressed to
the maximum compressive displacement, g α1;N1;D1; d1; d0; θð Þ is the
constraint that the compressive strength is not reached, while
J α1;N1;D1; d1; d0; θð Þ is the inverse function of K α1;N1;D1; d1; d0; θð Þ.

The design space and the type of each design variable of the opti-
misation problem are summarised in Table 1. The analytical model
can effectively predict the compressive stiffness of CHSs with arbitrary
helix angle. Therefore, the range of helix angle was set between 10°
and 45°, which covers the design range of the deployable composite
helical antenna (i.e. large helix angle) in the aerospace field. In order
to find the optimal ply angle, the range of ply angle was set between 0°
and 90°. The range of each variable was determined to ensure covering
all the existing applications of CHSs. The helix angle, the number of
active coils, the helix diameter, the outer diameter and the inner diam-
eter of cross‐section and the ply angle are the parameters that affect
the compressive stiffness, K α1;N1;D1; d1; d0; θð Þ, of Eq. (1), and the
helix angle, the number of active coils, the helix diameter, the outer
diameter and the inner diameter of cross‐section are the parameters
that affect the weight, w α1;N1;D1; d1; d0ð Þ, of Eq. (2). In order to
achieve a comprehensive Pareto front and test the performance of each
benchmarked Genetic Algorithm, all design variables were set as con-
tinuous variables.

In Eq. (3) the maximum compressive displacement of CHSs,
δmax α1;N1;D1; d1ð Þ, is kept constant. The helix angle, the number of
active coils, the helix diameter, the outer diameter of cross‐section
are the parameters that determine the maximum compressive displace-
ment of CHSs in Eq. (3). The helix angle, the number of active coils,
the helix diameter, the outer diameter and the inner diameter of
cross‐section and the ply angle are the parameters that affect the com-
pressive load corresponding to the maximum displacement of CHSs,
Pn α1;N1;D1; d1; d0; θð Þ, in Eq. (4). Furthermore, the helix angle, the
helix diameter, the outer diameter and the inner diameter of cross‐
section and the ply angle are the parameters that influence the com-
pressive failure load of CHSs, Pm α1;D1; d1; d0; θð Þ, in Eq. (5). When
Pm is higher than Pn, the CHS reaches its maximum compressive dis-
placement while maintaining its intact condition.

Penalty techniques are general methods to deal with optimisation
constraints. However, penalty techniques usually require user‐
defined problem‐dependent parameters, which have an impact on
the performance of the algorithms. Therefore, adaptive penalty tech-
niques [28–31] have gradually become popular. Adaptive penalty
techniques automatically set the values of all involved parameters
Table 1
Design space of the optimisation problem.

Design variable Type Lower bound Upper Bound

α 1 (deg) continuous 10 45
N1 continuous 6 10
D1 (mm) continuous 100 150
d1 (mm) continuous 9.5 11.5
d0 (mm) continuous 7.5 8.5
θ (deg) continuous 0 90

5

using the feedback from the search process without user intervention.
The penalisation coefficients are updated at each iteration on the basis
of the information restrained in the genotype of the whole population.
This paper utilised an adaptive penalty technique to deal with the con-
straints of the optimisation problem. A penalty coefficient was set in
the fitness function. For any feasible solution, the penalisation coeffi-
cient was 1; for any infeasible solution, the penalisation coefficient
was greater than 1. Furthermore, the penalisation coefficient was
increased with the increased magnitude of the constraint violation.
For more details about this method, the reader is addressed to [30].

3.2. State-of-the-art Genetic Algorithms

Due to the high nonlinearity and vary number of design variables
involved into the optimisation problem, gradient‐based solvers cannot
be directly utilised to obtain the optimal designs of CHSs. Therefore,
seven state‐of‐the‐art Genetic Algorithms, as numerical tools, were
investigated and compared for searching optimal solutions of the prob-
lem (6). Wang et al. [17,26] introduced the detailed mechanisms and
parameters of NSGA‐II, MOEA/D, MTS, MLSGA, MLSGA‐NSGAII and
MLSGA‐MOEA/D. This paper also used another popular Genetic Algo-
rithm, SPEA‐II, to optimise the CHSs. SPEA‐II is a widely used evolu-
tionary algorithm and it was proposed by Zitzler et al. [32] in 2001.
SPEA‐II uses an external archive to hold previously found non‐
dominated solutions and these solutions are updated after each gener-
ation. Each individual in the archive is assigned a strength value,
which also represents its fitness. An improved fitness assignment
scheme is used in SPEA‐II, which counts the number of solutions each
individual dominates and the number of solutions dominates the indi-
vidual. In order to allow a more precise guidance of the search process,
a k‐th nearest neighbour density estimation technique is incorporated.
In addition, a new archive truncation method uses the k‐th nearest
neighbour density estimation technique to maintain the diversity.
However, the SPEA‐II algorithm generally shows the disadvantage of
low computational efficiency. A detailed introduction of SPEA‐II is
referred to Zitzler et al. [32]. The hyperparameters of seven state‐of‐
the‐art Genetic Algorithms used within this optimisation study are
listed in Table 2, where the selection, crossover and mutation types
are default settings. In order to perform a fair test across the seven
Genetic Algorithms the same genetic operator types: selection, cross-
over and mutation, used the same operator rate, which is the same
as those selected for the CEC’09 benchmarking [27]. Although MTS
is a population‐based optimisation algorithm, it does not have cross-
over and mutation mechanisms. Thus, it used the same hyper‐
parameters as those in the CEC’09 competition, except the population
size and total number of function calls which are consistent with the
other six algorithms.

4. Optimisation of composite helical structures

The properties of the E‐glass/epoxy composite are shown in Table 3.
In this paper, the material attributions of plain weave fabric compos-
ites from Gobbi and Mastinu [16] were selected since Xiong et al.
[25] did not provide the strength parameters of their CHS. In addition,
the CHS in Gobbi and Mastinu [16] can be compressed to the maxi-
mum compressive displacement.

4.1. Benchmarking for Genetic Algorithms

In order to obtain the maximum compressive stiffness and the min-
imum weight of CHSs, the influences of population size were investi-
gated among the seven algorithms. According to the review from
Wang and Sobey [17], the most frequently used number of population
size is 50 and the most frequently used generation numbers are jointly
50 and 100, meaning that the most frequently used number of total



Table 2
Parameter definition for seven state-of-the-art Genetic Algorithms.

Algorithms NSGA-II MOEA/D SPEA-II MTS MLSGA MLSGA-MOEAD MLSGA-NSGAII

No. of populations 200/to 3000 200/to 3000 200/to 3000 200/to 3000 200/to 3000 200/to 3000 200/to 3000
No. of generations 100 – 100 – 100 100 100
Stop criterion Reach the max.

generation
(100)

Reach the total
number of fitness
evaluation

Reach the max.
generation (100)

Reach the total
number of fitness
evaluation

Reach the max.
generation
(100)

Reach the max.
generation
(100)

Reach the max.
generation
(100)

Crossover rate 0.7 1 0.7 – 0.7 1 0.7
Mutation rate 0.08 0.08 0.08 – 0.08 0.08 0.08
Selector operator NSGA-crowding

distance
MOEA/D Environmental and

mating selection
– MLSU MOEA/D NSGA-crowding

distance
Elitism operator Active Active Active Active Active Active Active

Table 3
Properties of the E-glass/epoxy
composite [1].

Property value

E1 (GPa) 28.00
E2 (GPa) 28.00
G12 (GPa) 9.50
ν 12 0.28
X (MPa) 473
Y (MPa) 473
S (MPa) 85
ρ(g/cm3) 2.00
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function evaluations is 5000. In order to determine the optimal popu-
lation size for each algorithm, population sizes of 200, 600, 1000,
1500, 2000 and 3000 were compared for the seven selected algo-
rithms. The runs generating the best Pareto front from 30 simulations
are illustrated in Fig. 3 for the highest and lowest population sizes for
each of the seven algorithms.

It is shown inFig. 3 thatNSGA‐II,MOEA/D,MTSandMLSGA‐NSGAII
all find continuous Pareto front with a good spread of results, covering a
similar range. It is considered that the population size has little effect on
these solvers. MLSGA‐MOEA/D is significantly affected by the popula-
tion size.When the population size is 200, only 26 points are on the Par-
eto front and the number of points on the Pareto front is increased with
the increase of the population size. When the population size is 3000,
there are 233 points on the Pareto front. They are not evenly distributed
and cover all potential solutions on the Pareto front. SPEA‐II is expected
to have excellent performance as a general solver but the performance
shown inFig. 3 is poor. It is shownSPEA‐II has inadequateabilityonfind-
ing the points on the upper left and lower right of the Pareto front. The
Pareto front results of MLSGA are not continuous, even as being a spe-
cialist algorithm for constrained problems. Furthermore, the influence
of population size is significant on MLSGA.

4.2. Quantitative analysis for Pareto front

In order to determine the quality of the Pareto front, a convergence
study was performed on the seven Genetic Algorithms at a population
size of 1500. Wang and Sobey [17] proposed a mimicked inverted gen-
erational distance (mIGD) approach inspired by the inverted genera-
tional distance [27] to evaluate the accuracy and diversity of Pareto
fronts. Themethod combines all the Pareto front solutions from all inde-
pendent run cycles of all the seven algorithms that were benchmarked.
Non‐domination and duplication checks were implemented on this aug-
mented Pareto front set to filter it and create a ‘real Pareto front’. The
mIGD values of the obtained Pareto fronts from each algorithm to this
mimicked ‘real Pareto front’ were calculated to evaluate the perfor-
manceof eachbenchmarkedalgorithmandwhether the obtainedPareto
front has been resolved. The mIGD is defined in Eq. (7) as,
6

mIGD O;M�ð Þ ¼ ∑ν∈Md ν;Oð Þ
M�j j ; ð7Þ

where M� represents a set of points along the mimicked Pareto
front, O represents a set of points from the currently obtained Pareto
front, ν is one of the points in the setM� and d ν;Oð Þ calculates the min-
imum Euclidean distance between ν and the points in O. Lower mIGD
values reflect a better quality and diversity of the Pareto front.

The mIGD values of the optimisation results obtained by each of the
seven solvers were recorded from 50 generations to 300 generations
with five 50‐generation intervals, which are shown in Fig. 4. It is expli-
cit that four of the seven solvers converge before reaching 300 gener-
ations, which are respectively MOEA/D, MLASG‐NSGAII, NSGA‐II and
MTS. In contrast to the MTS and NSGA‐II, the converge speed of
MOEA/D and MLSGA‐NSGAII are five times faster and they maintain
lower mIGD values along the 300 generations. Therefore, MOEA/D
and MLSGA‐NSGAII perform better than MTS and NSGA‐II on solving
this problem. When compare the MOEA/D against MLSGA‐NSGAII, the
mIGD values of MOEA/D are lower along the 300 generations, indicat-
ing a better convergency and diversity of the obtained Preto front.
Therefore, MOEA/D has the best performance among the four solvers,
followed by MLSG‐NSGAII. MOEA/D is considered having higher
probability of finding resolved Pareto front. Since all mIGD values of
NSGA‐II, including the mean mIGD value among the 30 runs and the
mIGD values from the best and worst cases, are lower than those from
MTS after 100‐generation and both solvers converge at 250 genera-
tions, NSGA‐II is ranked in the third place and MTS is the fourth place.

It is found that this optimisation problem cannot be solved by all the
seven solvers, where three solvers have not achieved converged solu-
tions after 300 generations, which are respectively MLSGA‐MOEA/D,
MLSGA and SPEA‐II. The mIGD values of MLSGA and MLSGA‐MOEA/
D gradually decrease with the increased generation number and all
mIGD values of MLSGA‐MOEA/D are lower than that of MLSGA. There-
fore, MLSGA‐MOEA/D performs better than MLSGA. It is explicit that
the mIGD values from SPEA‐II always maintain a high level with the
increase of generation number. Therefore, it is considered that SPEA‐II
has the worst performance among the three algorithms.

4.3. Design schema for composite helical structures

The results of MOEA/D with 1500 population size and 200 gener-
ations were chosen to demonstrate the implications for the optimal
designs of the E‐glass/epoxy CHS since MOEA/D achieves the best per-
formance among the seven solvers. Due to the repeatability of the
results across the seven solvers and their 30 independent cycles, each
point on the Pareto front is assumed close to the optimal designs of the
E‐glass/epoxy CHS. The compressive stiffness and the weight of the E‐
glass/epoxy experimental sample in reference [1] are respectively
1270 N/m and 108.77 g. Two points on the continuous Pareto front
were manually selected to demonstrate different types of designs,
namely Point A with the compressive stiffness of 1270 N/m and Point
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(e)                                     (f)
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Fig. 3. Comparison of Pareto fronts for different populations sizes: (a) MOEA/D (b) MLSGA-NSGAII (c) NSGA-II (d) MTS (e) MLSGA-MOEA/D (f) MLSGA (g)
SPEA-II.
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Fig. 4. Comparison of mIGD values for seven state-of-the-art Genetic Algorithms: (a) MOEA/D (b) MLSGA-NSGAII (c) NSGA-II (d) MTS (e) MLSGA-MOEA/D (f)
MLSGA (g) SPEA-II.
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B with the weight of 108.77 g. The location and resulting topologies of
the experimental sample, Points A and B are shown in Fig. 5. There are
totally 1500 examples on the entire Pareto front. Table A1 of Appendix
A summarises 21 designs to demonstrate how changes in the domain
affect the codomains, where the 21 designs were picked from the first
point of each 75 points interval. Appendix A shows that the relation-
ship between the objectives and the variables is nonlinear, which indi-
cates that it is difficult to make design decisions.

For Point A, Point B and the experimental sample in Fig. 5a, the left‐
hand side of Fig. 5b shows the helix angle, the number of active coils, the
helix diameter and the right‐hand side of Fig. 5b illustrates the ply angle,
the outer diameter and the inner diameter of cross‐section; for the helix
angle, the number of active coils and the helix diameter shown on the
left‐hand side, Point A, Point B and the experimental sample have the
same value, which are all at the lower boundary of domain (i.e. α
1 = 10°, N1 = 6 and D1 = 100 mm). For the ply angle shown on the
right‐hand side, although the domain of ply angle is [0°, 90°], the ply
angles of Point A, Point B and the experimental sample are all close to
45°; the outer diameters and the inner diameters of Points A and B are
explicitly different from those of the experimental sample. Point A and
the experimental sample have the same compressive stiffness. However,
when compare Point A against the experimental sample, the weight is
reduced by 8.85%. Point B and the experimental sample have the same
weight. However, when compare Point B to the experimental sample,
the compressive stiffness is increased by 11.12%. Between these two
designs, there are 65 points on the best Pareto front, providing a range
of designs exhibiting different secondary properties.

In order to further analyse the relationship between the domain
and the codomains, three points with special positions on the Pareto
front were selected by hand, namely the left end point (Point C:
K = 635.48 N/m and w = 54.19 g), the turning point (Point D:
K = 2640.75 N/m and w = 179.58 g) and the right end point (Point
E: K = 3106.47 N/m and w = 228.50 g), as shown in Fig. 5a. The
helix angle, the number of active coils and the helix diameter of all
Pareto front solutions are assigned by the minimum values of the
design variable range (i.e. α 1 = 10°, N1 = 6 and D1 = 100 mm),
which are similar as those from Points A and B. The ply angles from
Points C, D and E are oscillated around 45° (i.e. 45.36°, 44.88° and
45.89° respectively). The inner diameter of Point C is at the upper
boundary of the design variable range while the outer diameter is at
the lower boundary (i.e. d0 = 8.50 mm and d1 = 9.50 mm). Among
all Pareto front solutions, Point C has the lowest compressive stiffness
and the lowest weight, which are potentially applicable for ultralight
and deployable composite helical antenna; the outer diameter and
the inner diameter of Point D are at the maximum values of the design
variable range (i.e. d0 = 8.50 mm and d1 = 11.50 mm); the inner
diameter of Point E is the minimum value of the design variable range
while the outer diameter is the maximum value of the design variable
range (i.e. d0 = 7.50 mm and d1 = 11.50 mm), which can be used as a
shock‐absorbing spring due to the largest compressive stiffness.

5. Discussion

5.1. Determine the best practice through benchmarking

There is ‘no free lunch’, which means no algorithm can perform
consistently the best on solving all types of optimisation problems.
Therefore, benchmarking the state‐of‐the‐art Genetic Algorithms on
the optimisation problem of CHSs is compulsory as it may be domi-
nated by different characteristics. Benchmarking helps to determine
the dominant characteristics of the optimisation problem of CHSs
and to investigate the best practice of Genetic Algorithms for this
specific problem. Although general solvers such as NSGA‐II and
SPEA‐II are expected to provide generally reasonable results, Wang
et al. [17,26] pointed out that general solvers do not always perform
well on solving the problems with specific characteristics.
9

In order to investigate the optimal designs, seven state‐of‐the‐art
Genetic Algorithms were employed to optimise the CHSs to obtain
the maximum compressive stiffness and the minimum weight. The lea-
gue table of the seven state‐of‐the‐art Genetic Algorithms are sum-
marised in Table 4. SPEA‐II, as a popular general solver, cannot find
the entire Pareto front, which conflicts the general expectation. It fur-
ther verifies the argument of Wang et al. [17,26] that engineering opti-
misation problems are required to be treated specifically. Therefore, it
is necessary to analyse the dominant characteristics of the optimisation
problem of CHSs.

In the CEC’09 competition, MOEA/D ranks first on solving uncon-
strained problem and it maintains the diversity of solutions through
its decomposition mechanism. MOEA/D is the best solver on solving
this problem according to the results shown in Table 4. It is found that
although the problem is a constrained problem, the two constraints
had never been triggered from the randomly generated initial popula-
tion to the Pareto front solutions during the optimisation process.
MLSGA‐NSGAII and NSGA‐II rank second and third respectively
among the seven leading algorithms. NSGA‐II’s mechanism is based
on non‐domination ranking through the whole population to find
the Pareto front. The crowding distance is used to maintain the diver-
sity of solutions in NSGA‐II. In the CEC’09 competition, the hybrid
MLSGAs achieve higher performance than their original algorithms.
MLSGA‐NSGAII utilises its own collective evolution mechanism and
incorporates the crowding distance approach from the NSGA‐II on
the individual level to enhance the diversity of solutions. Among the
seven leading Genetic Algorithms, SPEA‐II has the worst performance
and its performance was inadequate to find the points on the upper left
and lower right of the Pareto front. However, it is found that the Par-
eto front has better quality and diversity with the increase of archive
size. A k‐th nearest neighbour density estimation technique is used

in SPEA‐II, where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ N

�
q

. The distances of all individuals in
the archive set to the k‐th nearest individual are calculated and those
individuals who have small distances are deleted. It guarantees the
remaining individuals are evenly distributed in the optimal area. The
increase of k value effectively maintains the diversity of the Pareto
front. This indicates that archive size has a significant effect on the
quality and diversity of the Pareto front but it is not generally consid-
ered in the composite literature. Therefore, it is considered that the
dominant characteristic of this specific type of problem is the solver’s
ability of maintaining its solutions’ diversity.

This paper focuses on the compressive stiffness and the weight of
CHSs, but due to the number and diversity of points, designers are
expected to find suitable geometric parameters that matching their
secondary requirements, such as the shear stiffness or the natural fre-
quency. A many‐objective optimisation will dig more interesting
insights for designers than the bi‐objective optimisation but the com-
plicity of the problem will be significantly increased. Insight from
the current optimisation results will allow a method to be developed
to include the shear stiffness and the natural frequency into the designs
of CHSs.

5.2. The relationship between the domain and the codomains

In order to obtain the maximum compressive stiffness and the min-
imum weight of CHSs, six independent variables (i.e. the helix angle,
the number of active coils, the helix diameter, the ply angle, the outer
diameter and the inner diameter of cross‐section) were set in this
paper.

According to Fig. 5 and Appendix A, all Pareto front solutions show
that the helix, the number of active coils and the helix diameter pick
their minimum values in the six‐dimensional domain. According to
Eq. (2), when the values of these variables are smaller, the CHS is
lighter; Liu et al. [1] have demonstrated that when the values of these
variables are smaller, the compressive stiffness of the CHS is larger.



(c)

 (a)

(b)

Fig. 5. Optimal designs of the E-glass/epoxy CHS: (a) sample points on Pareto front (b) the topologies of the experimental sample, Points A and B (c) the
topologies of Points C, D and E.
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Table 4
League table of the seven state-of-the-art Genetic Algorithms.

Genetic Algorithms Citation frequency Convergence Influence of hyperparameters Computational efficiency Rank

MOEA/D 4761 50 Generations Mild High 1
MLSAG-NSGAII 9 50 Generations Mild Medium 2
NSGA-II 33,165 150 Generations Medium High 3
MTS 42 250 Generations Medium High 4
MLSGA 9 Non-convergence Significant High 5
MLSAG-MOEA/D 9 Non-convergence Significant High 6
SPEA-II 7165 Non-convergence Mild Low 7

 (a)

(b)

Fig. 6. The relationship between the ply angle and the codomains: (a) the ply angles of all sample points on the Pareto front (b) the effect of ply angles on Ex and
Gxy.
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Therefore, the optimisation results are consistent with the theoretical
analysis.

Fig. 6a shows that the ply angles of all Pareto front solutions are
oscillated within the range from 44° to 46.5°. The elastic modulus of
composite in the tangential direction, Ex, and the shear modulus of
composite in the x‐y direction, Gxy, of E‐glass/epoxy composite with
different ply angles are illustrated in Fig. 6b. According to the consti-
tutive model of composite [1], when the ply angle increases from 0° to
11
90°, Ex first decreases and then increases, reaching the minimum value
at 45°; in contrast to Ex, Gxy increases first and then decreases, reaching
the maximum value at 45°. When a CHS are subjected to external com-
pressive load, the analytical model proposed by Liu et al. [1] points out
that the smaller the helix angle of the CHS, the larger the influence of
twisting moment on the strain energy. Since the helix angles of all Par-
eto front solutions are 10°, the twisting moment is the dominant stress,
while other internal forces or moments have little influences. Liu et al.



Fig. 7. The outer diameter and the inner diameter of all sample points on the Pareto front.
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[1] demonstrated that when the Gxy is increased, the compressive stiff-
ness of CHSs is increased. This is the main reason that the ply angles of
all Pareto front solutions are between 44° and 46.5°. It is worth men-
tioning that the manufacturing accuracy of ply angle is difficult to
reach 10−2 degrees, while the changes of Ex and Gxy are neglectable
when the ply angle is between 44° and 46.5°, shown in Fig. 6b. There-
fore, it is suggested to use 45° ply angle when design the E‐glass/epoxy
CHSs since it can significantly reduce the production cost.

However, it is difficult to determine the optimal outer and inner
diameters of cross‐section purely based on the theoretical model.
Fig. 7 shows the outer and inner diameters of cross‐section of all Par-
eto front solutions. According to Figs. 5 and 7, Point C at the upper left
end has the smallest outer diameter and the largest inner diameter.
From Points C to D on the Pareto front, the outer diameter gradually
increases while the inner diameter remaining the maximum value;
the turning point (i.e. Point D) has the largest outer and inner diame-
ters. From Points D to E on the Pareto front, the inner diameter grad-
ually decreases while the outer diameter remaining the maximum
value; Point E at the lower right end has the largest outer diameter
and the smallest inner diameter. The results show that the outer diam-
eters and the inner diameters of all Pareto front solutions have at least
one of the maximum or minimum values of the domain. For example,
compared with the experimental sample in reference [1], Points A and
B have better performance. The helix angle, the number of active coils
and the helix diameter of Point A, Point B and the experimental sample
have the same values (i.e. α 1 = 10°, N1 = 6 and D1 = 100 mm) and
similar ply angles which approximate 45°. The main differences among
the three designs are the outer and inner diameters of cross‐section.
The inner diameters of Points A and B are at the maximum value of
the domain, while the outer and inner diameters of the experimental
sample are not at the boundary of the domain. In future work, the type
of material may become an additional design variable. In Appendix B,
the mechanical properties of a carbon/epoxy composite [14] was used
to enhance the guideline on selecting the optimal designs of CHSs. The
benchmarking results show that MOEA/D is still the best solver. The
study shows that the rules of the helix angle, the number of active
coils, the helix diameter, the outer diameter and the inner diameter
of cross‐section are consistent with those shown in the optimal designs
of E‐glass/epoxy CHSs in Section 4.3 except the ply angle. For E‐glass/
epoxy CHSs, the ply angles of all Pareto front solutions are oscillated
12
within the range from 44° to 46.5° (Fig. 6a). However, for carbon/
epoxy CHSs, it is shown that the ply angles of all Pareto front solutions
are between 11.8° and 13.5° (Fig. B3). Nevertheless, if the failure con-
straint is removed from the optimisation, the ply angles of all Pareto
front solutions are around 45° while the rules of rest five design vari-
ables are not changed. Therefore, it is considered that for carbon/
epoxy composites the failure occurs when the ply angle is larger than
13.5°.

5.3. The guideline of efficiently selecting the optimal designs of composite
helical structures

Although Genetic Algorithms can obtain the optimal designs of
CHSs that simultaneously satisfying multiple requirements (i.e. the
maximum compressive stiffness and the minimum weight), the optimi-
sation process is relatively time‐consuming and complex. However,
using the relationship of the design domain and the codomains found
from this paper, engineers can determine the optimal design variables
in their applications through simple calculation rather than re‐running
the Genetic Algorithms. For the helix angle, the number of active coils
and the helix diameter, the designer should select the minimum values
of the domain; for the ply angle, the designer should select 45° since
the compressive stiffness of CHSs is commonly the highest when the
ply angle is about 45° for different types of composites. However, it
is not guaranteed that the optimal designs with 45° ply angle always
remain intact during compression, such as the carbon/epoxy CHSs
shown in Section 5.2. The failure significantly depends on the longitu-
dinal and transverse tensile or compressive strengths and the in‐plane
shear strength of the material. Therefore, the designer is recommended
to use g α1;N1;D1; d1; d0; θð Þ of Eq. (6) to check whether using 45° ply
angle causes the failure of their CHSs. If the CHSs remain intact, the
designer achieves the optimal designs; if the CHSs fail, it is necessary
to use the MOEA/D to obtain the optimal designs of CHSs. For the
outer and inner diameters of cross‐section, the designer can firstly
obtain the compressive stiffness and the weight of Points C, D and E
on the Pareto front according to the boundaries of domain of the outer
and inner diameters. If the minimum weight required by the designer
is within the range corresponding to the weight of Points C and D, the
maximum value of inner diameter of domain should be selected. Then
the corresponding outer diameter value can be solved according to Eq.



Table A1
Samples of optimal designs for E-glass/epoxy composite.

Compressive stiffness (N/m) Weight (g) d1 (mm) d0 (mm) θ (deg)

1 635.48 54.19 9.50 8.50 45.04
2 769.52 64.22 9.67 8.50 45.16
3 908.07 74.31 9.84 8.50 44.98
4 1048.83 84.21 10.01 8.50 45.69
5 1190.52 93.86 10.17 8.50 44.66
6 1332.10 103.22 10.32 8.50 45.55
7 1472.88 112.27 10.46 8.50 45.34
8 1611.94 120.98 10.61 8.50 44.85
9 1748.88 129.33 10.74 8.50 45.10
10 1882.79 137.33 10.86 8.50 45.35
11 2013.51 144.96 10.98 8.50 45.70
12 2140.63 152.23 11.09 8.50 45.62
13 2265.68 159.24 11.19 8.50 45.37
14 2384.75 165.81 11.29 8.50 45.55
15 2499.97 172.06 11.38 8.50 44.92
16 2611.04 177.99 11.47 8.50 44.91
17 2711.71 185.71 11.50 8.40 44.77
18 2807.57 195.29 11.50 8.20 45.33
19 2904.69 205.47 11.50 7.99 44.71
20 3004.03 216.45 11.50 7.76 45.04
21 3106.47 228.50 11.50 7.50 44.85

Note: The helix angles of all samples are 10°, the number of active coils are 6, and the helix diameters are 100 mm (i.e. α 1 = 10°, N1 = 6 and D1 = 100 mm).

Table B1
Properties of a carbon/
epoxy composite [14].

Property value

E1 (GPa) 111.67
E2 (GPa) 5.83
G12 (GPa) 3.50
ν 12 0.21
X (MPa) 1058
Y (MPa) 117.5
S (MPa) 52.5
ρ(g/cm3) 1.28
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(2) and finally the compressive stiffness of CHSs can be solved using
the values of all independent variables. If the designer determines
the required maximum compressive stiffness, then the six design vari-
ables and the minimum weight can be determined in the same way.
Using the proposed guideline, the efficiency of searching the optimal
designs of CHSs will be significantly increased in the practice.

6. Conclusions

Composite helical structures (CHSs) are increasingly used in aero-
space and automotive fields. It is necessary to optimise CHSs to obtain
the optimal compressive stiffness and weight. In this paper, Genetic
Algorithms were employed to find the optimal geometric configura-
tion of CHSs which can be compressed to the maximum compressive
displacement. Seven state‐of‐the‐art Genetic Algorithms were bench-
marked. The MOEA/D is the best solver, which was determined by a
quantitative analysis method, mIGD metric. As general solvers,
NSGA‐II and SPEA‐II were expected to provide top performance, but
SPEA‐II exhibited poor performance and NSGA‐II did not exhibit top
performance on searching the optimal designs of CHSs. The dominant
characteristic of this specific type of problem is the solver’s ability of
maintaining its solutions’ diversity. Without investigating the domi-
nant characteristic, the selection of the Genetic Algorithms is critical
to find the optimal solutions.

Among the achieved Pareto front solutions, Point A has the same
weight as the experimental sample [1] but the compressive stiffness
is increased by 11.12%. Point B has the same compressive stiffness
as the experimental sample [1] but the weight is reduced by 8.85%.
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The relationship between the six‐dimensional domain and the two‐
dimensional codomains was analysed. A design guideline of CHSs is
proposed in this paper to help the designers to efficiently determine
their required designs. The guideline recommends that the helix angle,
the number of active coils and the helix diameter are required to be
their minimum values in the domain during the design process to
achieve the maximum compressive and the minimum weight. The
ply angle is ideally chosen 45°. However, the designer is recommended
to use g α1;N1;D1; d1; d0; θð Þ of Eq. (6) to check whether using 45° ply
angle causes the failure of their CHSs. If the CHSs remain intact, the
designer achieves the optimal designs; if the CHSs fail, it is necessary
to use the MOEA/D to obtain the optimal designs of CHSs. Further-
more, the guideline demonstrates that the outer and inner diameters
of cross‐section are the main variables affecting the distribution of Par-
eto front solutions.

CRediT authorship contribution statement

Jiang‐Bo Bai: Supervision, Resources, Project administration.
Tian‐Wei Liu: Investigation, Validation, Writing ‐ original draft.
Zhen‐ZhouWang: Supervision, Methodology, Writing ‐ review & edit-
ing. Qiu‐Hong Lin: Resources. Qiang Cong: Resources. Yu‐Feng
Wang: Resources. Jiang‐Nan Ran: Resources. Dong Li: Investigation.
Guang‐Yu Bu: Investigation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This project was supported by the National Natural Science Foun-
dation of China (Grant No. 51875026) and the National Defense Basic
Research Program of China (Grant No. JCKY2019205C002).

Appendix

A. Samples of optimal designs



(a)                                     (b)

(c)                                     (d)

(e)                                     (f)
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Fig. B1. Comparison of Pareto fronts for different populations sizes: (a) MOEA/D (b) MLSGA-NSGAII (c) NSGA-II (d) MTS (e) MLSGA-MOEA/D (f) MLSGA (g)
SPEA-II.
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(b)

Fig. B2. Optimal designs of the carbon/epoxy CHS: (a) sample points on Pareto front (b) the topologies of Points C, D and E.
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Appendix B. Optimal designs of composite helical structures using a carbon/
epoxy composite

In order to enhance the guidelines on selecting the optimal designs
of CHSs, another material selected from Zebdi et al. [14] was used as a
validation case. Table B1 summarises the material properties of a car-
bon/epoxy composite. Similarly, the seven Genetic Algorithms were
benchmarked to optimise the carbon/epoxy CHS and the hyper‐
15
parameters were kept consistent with those in Section 3.2. The run
generating the best Pareto front from the 30 simulations are shown
in Fig. B1.It is explicit that MOEA/D, MLSGA‐NSGAII and NSGA‐II per-
form better than the rest solvers among the seven Genetic Algorithms.
MOEA/D has the lowest mIGD value, indicating a better convergency
and diversity of the obtained Pareto front. The mIGD value of MLSGA‐
NSGAII is lower than that of NSGA‐II. Therefore, MOEA/D has the best
performance among the three solvers, while MLSGA‐NSGAII is ranked



Fig. B3. The relationship between the ply angle and the codomains.
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in the second place and NSGA‐II is the third place. The results are con-
sistent with those shown in Sections 4.1 and 4.2. Therefore, the Pareto
front results of MOEA/D were chosen to analyse the implications for
the types of materials on the optimal designs of CHSs. The locations
and the resulting topologies of Points C, D and E are shown in
Fig. B2. The relationship between the ply angle and the codomains
are shown in Fig. B3.
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