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Abstract— The issue of finite-time state estimation is studied for
discrete-time Markovian bidirectional associative memory neural
networks. The asymmetrical system mode-dependent (SMD)
time-varying delays (TVDs) are considered, which means that
the interval of TVDs is SMD. Because the sensors are inevitably
influenced by the measurement environments and indirectly
influenced by the system mode, a Markov chain, whose transition
probability matrix is SMD, is used to describe the inconstant
measurement. A nonfragile estimator is designed to improve
the robustness of the estimator. The stochastically finite-time
bounded stability is guaranteed under certain conditions. Finally,
an example is used to clarify the effectiveness of the state
estimation.

Index Terms— Finite-time bounded, Markovian bidirectional
associative memory neural networks (BAM NNs), state estima-
tion, time-varying delays (TVDs).

I. INTRODUCTION

NEURAL networks (NNs) have a large number of suc-
cessful applications in various fields [1]–[4], and the

research of bidirectional associative memory (BAM) NNs,
which was first proposed and researched by Kosko [5], is an
important branch. The BAM NNs have important application
prospects in automatic control, multifault diagnosis, combina-
tion optimization, signal and image processing, and so on [6].
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In practice, the structure and parameters of system are not
always constant as time goes on, which can be described
by the Markovian jump model, and many results about it
have been proposed [7]–[12]. In addition, with the widespread
application of digital computing units, the study of discrete-
time Markovian BAM NNs is particularly important. The time
delay is inevitable and usually asymmetrical in the information
transmission course between two layers of BAM NNs, which
may cause instability. The time delay that occurs in BAM
NNs can be classified as constant time delay, time-varying
delays (TVDs), distributed delays, and mixed time delays [13].
The stability analysis of BAM NNs with time delays is of
great significance, which has been studied and explored by
many researchers. Sowmiya et al . [14] studied the mean-square
asymptotic stability of the impulsive Markovian jumping BAM
NNs with distributed TVDs. In [15], the discrete-time BAM
NNs with TVDs were explored, and sufficient conditions
were obtained to ensure that the augmented system is finite-
time bounded. The global robust exponential dissipativity of
BAM NNs with mixed time delays was analyzed in [16].
What we have to point out is that the transmission delay
always depends on the system operation conditions [17]–[19].
Specially, mode-dependent time delays that are easier to match
the actual circumstance were first studied for discrete-time
Markovian jump system in [19]. Unfortunately, two decades
after Boukas and Liu’s work [19], the mode-dependent delays
for the discrete-time Markovian jump system have not been
fully considered and investigated yet. In practice, for discrete-
time Markovian BAM NNs, the delays change in different time
intervals for different system modes and different layers, how
to model and analyze the delays motivates our further study.

Networked control systems are widely used in the actual
systems, where the subsystems are distributed in different
places and connected by unreliable networks [20], [21]. In net-
worked control systems, the information measured by the
sensors is transmitted to the remote controller or estimator,
and the control signals are transmitted back to the systems
[22], [23]. The sensors need to locate in the harsh environment
to obtain some special measurements [24], where the sensors
always meet some challenges, such as scope, energy consump-
tion, and sudden change in temperature. Thus, the derived
measurements may be unreliable, and some related works have
been derived. In [25], multistep sensor delays and missing
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measurements were considered, which were caused by noisy
environment and unreliable communication. Yan et al. [26]
researched multisensor systems with heavy-tailed noises and
unreliable measurements, where different sensors were likely
to work with different sampling rates. Therefore, it is an
important topic that further investigates the characteristics
of sensors and the real situations to derive a more general
measurement model.

In most cases, the sensors cannot obtain the state directly,
and thus, how to design an estimator to estimate the system
state by partially observable information is a research hotspot
and attracts a lot of attention [27]–[32]. In [33], for the
discrete-time Markov jump NNs, an asynchronous and
resilient filter was proposed. In [34], a buffer-dependent
smart estimator was designed for networked systems with
a Markov-driven transmission strategy, and the buffer with
limited capacity was considered. For the channel fading and
dynamic event-triggered strategy, the nonfragile estimator is
able to improve the robustness of the estimator, where the
uncertainty is within permitted interval [35]. By searching a
mass of relevant references, the nonfragile estimator design
using the polytopic uncertainty (PU) model has not been fully
considered.

The classical control theory mainly deals with the asymp-
totic behavior of the system trajectory in an infinite interval.
In practice, most of the research works focus on dynamic
performance over a finite time, such as the problem of
controlling and tracking for autonomous underwater vehi-
cles from an initial point to a final point in a prescribed
time interval [36]. Some latest related results about finite-
time boundedness, finite-time stability, and finite-time state
estimation can be found in [37]–[40]. However, to the best
of our knowledge, the finite-time state estimation problem for
discrete-time Markovian BAM NNs with asymmetrical system
mode-dependent (SMD) TVDs and inconstant measurements
has not been fully analyzed yet and needs to be further
investigated.

This work studies the finite-time state estimation for
Markovian BAM NNs with asymmetrical SMD TVDs and
inconstant measurements. A nonfragile estimator is designed
by the PU analysis method to ensure that the estimation error
system (EES) meets the stochastically finite-time bounded
(SFTB). An example is used to clarify the results. The main
contributions are as follows.

1) A novel model of asymmetrical SMD TVDs is consid-
ered for discrete-time Markovian BAM NNs, where the
TVDs change in different time intervals for different
system modes and different layers. Compared with the
existing ones [14]–[19], the SMD TVDs pay more
attention to the change interval of TVDs, which are more
detailed and match the actual circumstance.

2) A general Markov chain ϑ(k) ∈ S = {1, 2, . . . , s}
is used to describe the conditions of the measure-
ment, where the transition probability matrix is SMD.
Furthermore, a new Lyapunov–Krasovskii function is
established to analyze the Markovian BAM NNs with
SMD TVDs and inconstant measurements.

Fig. 1. Structure diagram of state estimation for Markovian BAM NNs with
asymmetrical SMD TVDs and inconstant measurements.

3) The PU model is employed to describe the uncertainty of
the estimator gains, which is less conservative than the
interval uncertainty (IU) model [35]. In the end, the sim-
ulation results depend on selection of design parameters,
and their effects on performance of the proposed method
are analyzed through simulation experiments.

The organization of this article is as follows. In Section II,
the discrete Markovian BAM NNs with asymmetrical SMD
TVDs and inconstant measurements are described, and a non-
fragile estimator is designed. Sufficient conditions of the SFTB
are given, and the nonfragile estimator gains are obtained in
Section III. In Section IV, a numerical simulation is given, and
conclusions are given in the end.

Notations: The symbols Rn and Rm×n denote the
n-dimensional vectors and m × n real matrices, respectively.
The symbols λmin(X) and λmax(X) are, respectively, denoted
as the smallest eigenvalue and largest eigenvalue for matrix X .
The matrix X T is the transpose of matrix X , and the symbol
diag{·} stands for the diagonal matrix. The symbol E{·} means
the expectation of a stochastic variable.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

A. Markovian BAM NNs Description

As shown in Fig. 1, the discrete-time Markovian BAM NNs
with asymmetrical SMD TVDs are considered as⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎨⎨⎨⎩

x(k + 1) = Aδ(k)x(k) + Bδ(k) g(y(k − dδ(k)(k)))

+ Eδ(k)ω1(k)

y(k + 1) = Cδ(k) y(k) + Dδ(k) g(x(k − τδ(k)(k)))

+ Fδ(k)ω2(k)

x(ι1) = φ1(ι1), ι1 ∈ {−τM,−τM + 1, . . . , 0}
y(ι2) = φ2(ι2), ι2 ∈ {−dM ,−dM + 1, . . . , 0}

(1)

where x(k) ∈ Rn and y(k) ∈ Rn are state vectors and
Aδ(k) ∈ Rn×n, Bδ(k) ∈ Rn×n, Cδ(k) ∈ Rn×n, Dδ(k) ∈ Rn×n,
Eδ(k) ∈ Rn×p1 , and Fδ(k) ∈ Rn×p2 are known matrices.
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The stochastic variable δ(k) is a Markov chain, and its states
δ(k) ∈ S = {1, 2, . . . , s} obey the transition probability

πqr = P{δ(k + 1) = r |δ(k) = q}, q, r ∈ S. (2)

The transition probability matrix of the Markov chain is
	δ = [ πqr ]s×s with

�s
r=1 πqr = 1, ∀q ∈ S.

The scalars dδ(k)(k) and τδ(k)(k) represent the asymmetrical
SMD integer TVDs. The time delays vary in different time
intervals under different system modes, that is, the integer
TVDs satisfy the following inequalities:

dmδ(k) ≤ dδ(k)(k) ≤ dMδ(k)

τmδ(k) ≤ τδ(k)(k) ≤ τMδ(k) (3)

where dMδ(k), dmδ(k), τMδ(k), and τmδ(k) are, respectively, repre-
sent the upper and lower bound of the asymmetrical TVDs
dδ(k)(k) and τδ(k)(k). The scalars τM � maxδ(k)∈S{τMδ(k)},
τm � minδ(k)∈S{τmδ(k)}, dM � maxδ(k)∈S{dMδ(k)}, and dm �
minδ(k)∈S{dmδ(k)} are known parameters.

The vectors ω1(k) ∈ Rp1 and ω2(k) ∈ Rp2 are noise
sequences in a finite horizon [0, N] and satisfy

N�
k=0

(ω1(k)T ω1(k) + ω2(k)T ω2(k)) < c2
1. (4)

The nonlinear neuron activation function g(x(k)) of the
Markovian BAM NNs is assumed to satisfy the following
condition.

Assumption 1: The nondecreasing nonlinear function gi(·),
i ∈ {1, 2, . . . , n}, is continuous, and there exists a constant �̄i

such that the inequality (5) holds [41]

0 ≤ gi (a) − gi (b)

a − b
≤ �̄i (5)

where a, b ∈ R and a �= b.
In the actual condition, the sensors are inevitably influenced

by the environment disturbances and the system operation
condition. Thus, the measurements of the Markovian BAM
NNs with asymmetrical SMD TVDs are�

zx(k) = Lx,ϑ(k) x(k) + Mx,ϑ(k)ν1(k)

zy(k) = L y,ϑ(k) y(k) + My,ϑ(k)ν2(k)
(6)

where zx(k) ∈ Rm and zy(k) ∈ Rm are the measurement
vectors, Lx,ϑ(k) ∈ Rm×n , L y,ϑ(k) ∈ Rm×n , Mx,ϑ(k) ∈ Rm×q1 , and
My,ϑ(k) ∈ Rm×q2 are known matrices. ϑ(k) ∈ S = {1, 2, . . . , s}
is a Markov chain with the transition probability matrices
	δ(k)

ϑ = 	πδ(k)
ıj



s×s

given by

πδ(k)
ıj = P{ϑ(k + 1) = j |ϑ(k) = ı, δ(k)} (7)

where 0 ≤ πδ(k)
ıj ≤ 1 for all ı, j ∈ S, δ(k) ∈ S, and�s

j=1 πδ(k)
ıj = 1 for all ı ∈ S, δ(k) ∈ S. δ(k) is a Markov

chain and the mode is available at instant k.
The noise vectors ν1(k) ∈ Rq1 and ν2(k) ∈ Rq2 satisfy the

following condition:
N�

k=0

(ν1(k)T ν1(k) + ν2(k)T ν2(k)) < c2
2. (8)

Remark 1: The measurements obtained by the sensors are
always unideal. There are two reasons that influence the
measurements. On the one hand, the environment of the
system is inconstant, including temperature and humidity.
On the other hand, the measurements are also related to the
system operating condition. Thus, a Markov chain ϑ(k) whose
transition probability depends on δ(k) is used to describe the
measurement condition.

B. State Estimator and EES

For the reason that there exists an uncertainty of the
estimator, the following nonfragile state estimator is designed
to increase the reliability of the estimator:⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩

x̂(k + 1) = Aδ(k) x̂(k) + Bδ(k) g( ŷ(k−dδ(k)(k)))

+ Kx,α (zx(k) − Lx,ϑ(k) x̂(k))

ŷ(k + 1) = Cδ(k) ŷ(k) + Dδ(k) g(x̂(k−τδ(k)(k)))

+ Ky,β(zy(k) − L y,ϑ(k) ŷ(k))

ẑx(k) = Lx,ϑ(k) x̂(k)

ẑy(k) = L y,ϑ(k) ŷ(k)

x̂(ι) = ŷ(ι) = 0

(9)

where ι ∈ {−χM ,−χM + 1, . . . , 0}, χM = max{τM , dM}. The
state vector x̂(k) ∈ Rn (or ŷ(k) ∈ Rn) is the estimation of
the state x(k) (or y(k)), and the output of the estimator is
ẑx(k) ∈ Rm (or ẑy(k) ∈ Rm). The matrices Kx,α ∈ Rn×m

and Ky,β ∈ Rn×m are the estimator gains that will be
designed later. For the purpose to improve the robustness of
the estimator, the nonfragile estimator gains are considered,
which are described by the following PU model:

Kx,α � αKx,1 + (1 − α)Kx,2, 0 � α � 1

Ky,β � βKy,1 + (1 − β)Ky,2, 0 � β � 1 (10)

where matrices Kx,1, Kx,2, Ky,1, and Ky,2 stand for the vertices
of the polytopes and satisfy the equalities (11) and the scalars
α and β are time-invariants

Kx,2 − Kx,1 = �

Ky,2 − Ky,1 = � (11)

where � and � are known matrices.
Define ex(k) � x(k) − x̂(k) and ey(k) � y(k) − ŷ(k)

as the state estimation errors, and ezx (k) � zx(k) − ẑx(k)
and ezy (k) � zy(k) − ẑy(k) are the measurement estimation
errors, also denote h̄2(ey(k−dδ(k)(k))) � g(y(k−dδ(k)(k))) −
g( ŷ(k −dδ(k)(k))), h̄1(ex(k −τδ(k)(k))) � g(x(k −τδ(k)(k))) −
g(x̂(k − τδ(k)(k))), v1(k) � [ω1(k)T ν1(k)T ]T , and v2(k) �
[ω2(k)T ν2(k)T ]T . Then, the EES of the Markovian BAM NNs
can be obtained from (1) and (9)⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎨⎨⎨⎩

ex(k + 1) = Āδ(k),ϑ(k)ex(k) + Ēδ(k),ϑ(k)v1(k)

+ Bδ(k) h̄2(ey(k − dδ(k)(k)))

ey(k + 1) = C̄δ(k),ϑ(k)ey(k) + F̄δ(k),ϑ(k)v2(k)

+ Dδ(k) h̄1(ex(k − τδ(k)(k)))

ex(ι1) = φ1(ι1), ey(ι1) = φ2(ι2)

(12)
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where

Ēδ(k),ϑ(k) = [Eδ(k) − Kx,α Mx,ϑ(k) ]
F̄δ(k),ϑ(k) = [Fδ(k) − Ky,β My,ϑ(k)]
Āδ(k),ϑ(k) = Aδ(k) − Kx,α Lx,ϑ(k)

C̄δ(k),ϑ(k) = Cδ(k) − Ky,β L y,ϑ(k).

Definition 1: The EES (12) satisfies the SFTB, if there exist
positive scalars δ1 and δ2 (δ2 ≥ δ1 > 0), a positive definite
matrix R satisfying that the inequalities (4), (8), and (13) hold,
for ι ∈ {−χM ,−χM + 1, . . . , 0} [41]

E{ex(ι)
T Rex(ι) + ey(ι)

T Rey(ι)} ≤ δ2
1 . (13)

Then, the following inequality holds for ∀k ∈ {1, 2, . . . , N}:
E{ex(k)T Rex(k) + ey(k)T Rey(k)} ≤ δ2

2 . (14)

III. MAIN RESULTS

This section is devoted to studying the sufficient conditions
that the EES (12) satisfies the SFTB. Before the presentation,
define

�1 � diag
�
�̄1, �̄2, . . . , �̄n

�
�2 � 1

2
�1, R̄ = R− 1

2 �T
1 �1 R− 1

2 .

Theorem 1: Given a scalar γ > 1, the EES (12) is SFTB,
if there exist matrices Pq,ı � 0, Qq,ı � 0, P2 � 0, P3 � 0,
Q2 � 0, Q3 � 0, S1 � 0, S2 � 0, �1 � 0, �2 � 0, ε1 � 0,
ε2 � 0, Kx,1 and Ky,1, and a scalar l0 > 0, such that the
following matrix inequalities hold for ∀q ∈ S, ı ∈ S:⎡
⎢⎢⎢⎢⎢⎢⎣

�11 �12 0 0 �15 0
∗ �22 0 0 0 �26

∗ ∗ −S1 0 ĒT
q,ı 0

∗ ∗ ∗ −S2 0 F̄T
q,ı

∗ ∗ ∗ ∗ −P̄−1
r,j 0

∗ ∗ ∗ ∗ ∗ −Q̄−1
r,j

⎤
⎥⎥⎥⎥⎥⎥⎦

≺ 0 (15)

min
δ(0)∈S,ϑ(0)∈S

{λmin(P̃δ(0),ϑ(0))} > l0 (16)

min
δ(0)∈S,ϑ(0)∈S

{λmin(Q̃δ(0),ϑ(0))} > l0 (17)

γ N

�
max

δ(0)∈S,ϑ(0)∈S
{λδ(0),ϑ(0)}δ2

1 +λmax(S)c2

�
≤ l0δ

2
2 (18)

where

�11 = diag{�111,�112,�113,�114}

�12 =

⎡
⎢⎢⎣

0 0 �1�2 0
0 0 0 �2�2

�T
2 εT

1 0 0 0
0 �T

2 εT
2 0 0

⎤
⎥⎥⎦

�111 = −γ Pq,ı + π̄τ,q P2 + πq,q(τMq − τmq)P2

�112 = −γ τmq P2, π̄τ,q = π̄q(τM − τm) + 1

�113 = (dMq − dmq + 1)Q3 − ε1

�114 = −γ dmq Q3 − ε2, π̄q = 1 − πq,q

�22 = diag{�221,�222,�223,�224}
�221 = −γ Qq,ı + π̄d,q Q2 + πq,q(dMq − dmq)Q2

�222 = −γ dmq Q2, π̄d,q = π̄q(dM − dm) + 1

�223 = (τMq − τmq + 1)P3 − �1

�224 = −γ τmq P3 − �2, c2 = c2
1 + c2

2

�15 =

⎡
⎢⎢⎣

ĀT
q,ı

0
0

BT
q

⎤
⎥⎥⎦, �26 =

⎡
⎢⎢⎣

C̄T
q,ı

0
0

DT
q

⎤
⎥⎥⎦

P̄r,j =
s�

j=1

s�
r=1

πq
ıjπqr Pr,j , Q̄r,j =

s�
j=1

s�
r=1

πq
ıjπqr Qr,j

P̃δ(0),ϑ(0) = R− 1
2 Pδ(0),ϑ(0) R− 1

2 , P̃2 = R− 1
2 P2 R− 1

2

Q̃δ(0),ϑ(0) = R− 1
2 Qδ(0),ϑ(0) R− 1

2 , Q̃2 = R− 1
2 Q2 R− 1

2

λδ(0),ϑ(0) = λmax(P̃δ(0),ϑ(0)) + λmax(Q̃δ(0),ϑ(0))

+ λmax(P̃2)
�
1 + π̄δ(0)(τM − τm)

+ πδ(0),δ(0)(τMδ(0) − τmδ(0)) − γ τMδ(0)

+ (π̄δ(0)(γ
τM − γ τm ) + πδ(0),δ(0)

× (γ τMδ(0) − γ τmδ(0) ))/(1−γ )
�
/(1−γ )

+ λmax(Q̃2)
�
1 + π̄δ(0)(dM − dm)

+ πδ(0),δ(0)(dMδ(0) − dmδ(0)) − γ dMδ(0)

+ (π̄δ(0)(γ
dM − γ dm ) + πδ(0),δ(0)

× (γ dMδ(0) − γ dmδ(0) ))/(1−γ )
�
/(1−γ )

+ λmax(P3)λmax(R̄)
�
1 + τMδ(0) − τmδ(0)

+ (γ τMδ(0)+1 − γ τmδ(0) )/(1 − γ )
�
/(1 − γ )

+ λmax(Q3)λmax(R̄)
�
1 + dMδ(0) − dmδ(0)

+ (γ dMδ(0)+1 − γ dmδ(0) )/(1 − γ )
�
/(1 − γ ).

Proof: In order to simplify to the expression, define
δ(k) � q , δ(k + 1) � r , ϑ(k) � ı , and ϑ(k + 1) � j . Then,
a Lyapunov–Krasovskii functional candidate is defined for the
EES as follows:

V (k, x(k), y(k), q, ı) =
4�

l=1

Vl(k, x(k), y(k), q, ı) (19)

where

V1(k, x(k), y(k), q, ı)

= ex(k)T Pq,ı ex(k) + ey(k)T Qq,ı ey(k)

V2(k, x(k), y(k), q, ı)

=
k−1�

i=k−τq (k)

γ k−i−1ex(i)
T P2ex(i)

+ π̄q

k−τm�
i=k−τM +1

k−1�
j=i

γ k− j−1ex( j)T P2ex( j)

+ πq,q

k−τmq�
i=k−τMq +1

k−1�
j=i

γ k− j−1ex( j)T P2ex( j)

V3(k, x(k), y(k), q, ı)

=
k−1�

i=k−dq (k)

γ k−i−1ey(i)
T Q2ey(i)
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+ π̄q

k−dm�
i=k−dM +1

k−1�
j=i

γ k− j−1ey( j)T Q2ey( j)

+ πq,q

k−dmq�
i=k−dMq +1

k−1�
j=i

γ k− j−1ey( j)T Q2ey( j)

V4(k, x(k), y(k), q, ı)

=
k−τmq�

i=k−τMq

k−1�
j=i

γ k− j−1 h̄1(ex( j))T P3 h̄1(ex( j))

+
k−dmq�

i=k−dMq

k−1�
j=i

γ k− j−1 h̄2(ey( j))T Q3 h̄2(ey( j)). (20)

Then, the difference of the Lyapunov–Krasovskii functional
candidate in the mean sense is defined as

E{�V (k, x(k), y(k), q, ı)}

�
4�

l=1

E{�Vl(k, x(k), y(k), q, ı)}

�
4�

l=1

�
E{Vl(k + 1, x(k + 1), y(k + 1), r, j)}

− γ E{Vl(k, x(k), y(k), q, ı)}�. (21)

From (19) to (21), we have

E{�V1(k, x(k), y(k), q, ı)}
= E

�
ex(k + 1)T P̄r,j ex(k + 1)

+ ey(k + 1)T Q̄r,j ey(k + 1)

− γ ex(k)T Pq,ı ex(k) − γ ey(k)T Qq,ı ey(k)
�
. (22)

Also, E{�V2(k, x(k), y(k), q, ı)} is as follows:
E{�V2(k, x(k), y(k), q, ı)}

= E

�
πq,q

� k�
i=k−τq (k+1)+1

γ k−i ex(i)
T P2ex(i)

−
k−1�

i=k−τq (k)

γ k−i ex(i)
T P2ex(i)

�

+
S�

r=1,r �=q

πq,r

� k�
i=k−τr (k+1)+1

γ k−i ex(i)
T

× P2ex(i) −
k−1�

i=k−τq (k)

γ k−i ex(i)
T P2ex(i)

�

+ π̄q

�
(τM − τm)ex(k)T P2ex(k)

−
k−τm�

i=k−τM +1

γ k−i ex(i)
T P2ex(i)

�

+ πq,q

�
(τMq − τmq)ex(k)T P2ex(k)

−
k−τmq�

i=k−τMq +1

γ k−i ex(i)
T P2ex(i)

��

≤ E
�
(π̄q(τM − τm) + 1)ex(k)T P2ex(k)

+ πq,q(τMq − τmq)ex(k)T P2ex(k)

− γ τmq ex(k − τq(k))T P2ex(k − τq(k))
�
. (23)

Similar to (23), it follows that

E{�V3(k, x(k), y(k), q, ı)}
≤ E{(π̄q(dM − dm) + 1)ey(k)T Q2ey(k)

+ πq,q(dMq − τmq)ey(k)T Q2ey(k)

− γ dmq ey(k − dq(k))T Q2ey(k − dq(k))}. (24)

Finally, the condition (25) holds

E{�V4(k, x(k), y(k), q, ı)}

= E

⎧⎨
⎩

k−τmq�
i=k−τMq

k�
j=i+1

γ k− j h̄1(ex( j))T P3 h̄1(ex( j))

−
k−τmq�

i=k−τMq

k−1�
j=i

γ k− j h̄1(ex( j))T P3 h̄1(ex( j))

+
k−dmq�

i=k−dMq

k�
j=i+1

γ k− j h̄2(ey( j))T Q3 h̄2(ey( j))

−
k−dmq�

i=k−dMq

k−1�
j=i

γ k− j h̄2(ey( j))T Q3 h̄2(ey( j))

⎫⎬
⎭

≤ E{(τMq − τmq + 1)h̄1(ex(k))T P3 h̄1(ex(k))

− γ τmq h̄1(ex(k − τq(k)))T P3 h̄1(ex(k − τq(k)))

+ (dMq − dmq + 1)h̄2(ey(k))T Q3 h̄2(ey(k))

− γ dmq h̄2(ey(k − dq(k)))T Q3 h̄2(ey(k − dq(k)))}.
(25)

Considering the EES (12) and the formulas (22)–(25),
it yields

E{�V (k, x(k), y(k), q, ı)}
≤ E

�
ex(k)T ĀT

q,ı P̄r,j Āq,ı ex(k)

+ h̄2(ey(k − dq(k)))T BT
q P̄r,j Bq h̄2(ey(k − dq(k)))

+ 2ex(k)T ĀT
q,ı P̄r,j Bq h̄2(ey(k − dq(k)))

+ 2ex(k)T ĀT
q,ı P̄r,j Ēq,ıv1(k)

+ 2h̄2(ey(k − dq(k)))T BT
q P̄r,j Ēq,ıv1(k)

+ v1(k)T ĒT
q,ı P̄r,j Ēq,ıv1(k) − γ ex(k)T Pq,ı ex(k)

+ ey(k)T C̄T
q,ı Q̄r,j C̄q,ı ey(k)

+ h̄1(ex(k − τq(k)))T DT
q Q̄r,j Dq h̄1(ex(k − τq(k)))

+ 2ey(k)T C̄T
q,ı Q̄r,j Dq h̄1(ex(k − τq(k)))

+ 2ey(k)T C̄T
q,ı Q̄r,j F̄q,ı v2(k)

+ 2h̄1(ex(k − τq(k)))T DT
q Q̄r,j F̄q,ıv2(k)

+ v2(k)T F̄T
q,ı Q̄r,j F̄q,ı v2(k) − γ ey(k)T Qq,ı ey(k)

+ π̄τ,q ex(k)T P2ex(k) + π̄d,q ey(k)T Q2ey(k)

+ πq,q(τMq − τmq)ex(k)T P2ex(k)

− γ τmq ex(k − τq(k))T P2ex(k − τq(k))

+ πq,q(dMq − dmq)ey(k)T Q2ey(k)
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− γ dmq ey(k − dq(k))T Q2ey(k − dq(k))

+ (τMq − τmq + 1)h̄1(ex(k))T P3 h̄1(ex(k))

− γ τmq h̄1(ex(k − τq(k)))T P3 h̄1(ex(k − τq(k)))

+ (dMq − dmq + 1)h̄2(ey(k))T Q3 h̄2(ey(k))

− γ dmq h̄2(ey(k − dq(k)))T Q3 h̄2(ey(k − dq(k)))}.
(26)

Based on Assumption 1, there exist diagonal matrices
�1 � 0, �2 � 0, ε1 � 0, and ε2 � 0 such that the inequalities
(27) are guaranteed

η17(k)T

�
0 �1�2

∗ −�1

�
η17(k) ≥ 0

η53(k)T

�
0 ε1�2

∗ −ε1

�
η53(k) ≥ 0

η28(k)T

�
0 �2�2

∗ −�2

�
η28(k) ≥ 0

η64(k)T

�
0 ε2�2

∗ −ε2

�
η64(k) ≥ 0 (27)

where

η17(k) =
�

ex(k)
h̄1(ex(k))

�
, η28(k) =

�
ex(k − τδ(k))

h̄1(ex(k − τδ(k)))

�

η53(k) =
�

ey(k)
h̄2(ey(k))

�
, η64(k) =

�
ey(k − dδ(k))

h̄2(ey(k − dδ(k)))

�
.

In view of (26), substituting the left-hand side of (27) into
the right-hand side of (26) gives

E{�V (k, x(k), y(k), q, ı)}
≤ E{η(k)T �η(k)

+ v1(k)TS1v1(k) + v2(k)TS2v2(k)}
= E{η(k)T �η(k) + v(k)TSv(k)}

where

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 0 0 �14 0 0 �1�2 0 �19

∗ �22 0 0 0 0 0 �2�2 0
∗ ∗ �33 0 �T

2 εT
1 0 0 0 0

∗ ∗ ∗ �44 0 �T
2 εT

2 0 0 �49

∗ ∗ ∗ ∗ �55 0 0 �58 �59

∗ ∗ ∗ ∗ ∗ �66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ �77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ �88 �89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

with

η(k) = 	
ex(k)T ex(k−τq(k))T h̄2(ey(k))T

h̄2(ey(k−dq(k)))T ey(k)T ey(k−dq(k))T

h̄1(ex(k))T h̄1(ex(k−τq(k)))T v(k)T

T

v(k) = 	
v1(k)T v2(k)T


T
, S = diag{S1,S2}

�11 = ĀT
q,ı P̄r,j Āq,ı − γ Pq,ı + π̄τ,q P2 + πq,q(τMq − τmq)P2

�14 = ĀT
q,ı P̄r,j Bq, �49 = 	 BT

q P̄r,j Ēq,ı 0



�19 = 	
ĀT

q,ı P̄r,j Ēq,ı 0


, �59 = 	 0 C̄T

q,ı Q̄r,j F̄q,ı



�22 = −γ τmq P2, �66 = −γ dmq Q2

�33 = (dMq − dmq + 1)Q3 − ε1

�77 = (τMq − τmq + 1)P3 − �1

�44 = BT
q P̄r,j Bq − γ dmq Q3 − ε2

�55 = C̄T
q,ı Q̄r,j C̄q,ı − γ Qq,ı + π̄d,q Q2

+ πq,q(dMq − dmq)Q2

�58 = C̄T
q,ı Q̄r,j Dq , �89 = 	 0 DT

q Q̄r,j F̄q,ı



�88 = DT

q Q̄r,j Dq − γ τmq P3 − �2

�99 =
�

ĒT
q,ı P̄r,j Ēq,ı 0

∗ F̄T
q,ı Q̄r,j F̄q,ı

�
− S.

Employing the Schur complement lemma to (15), it follows
� ≺ 0, which implies

E{� V (k, x(k), y(k), q, ı)} < v(k)Sv(k). (29)

By using the iterative method to (29), we obtain the follow-
ing condition:
E{V (k, x(k), y(k), δ(k), ϑ(k))}

< γ k
E{V (0, x(0), y(0), δ(0), ϑ(0))}

+ λmax(S)

k−1�
i=0

γ k−i−1v(i)T v(i)

< γ k
�
E{V (0, x(0), y(0), δ(0), ϑ(0))} + λmax(S)c2�. (30)

According to (5) of Assumption 1, (13), and (19),
we achieve

E{V (0, x(0), y(0), δ(0), ϑ(0))}

≤
⎛
⎝λmax(P̃δ(0),ϑ(0)) + λmax(Q̃δ(0),ϑ(0))

+ λmax(P̃2)

⎛
⎝π̄δ(0)

−τm�
i=−τM +1

−1�
j=i

γ − j−1

+ πδ(0),δ(0)

−τmδ(0)�
i=−τMδ(0)+1

−1�
j=i

γ − j−1

+
−1�

i=−τMδ(0)

γ −i−1

⎞
⎠+ λmax(Q̃2)

×
⎛
⎝π̄δ(0)

−dm�
i=−dM +1

−1�
j=i

γ − j−1 +
−1�

i=−dMδ(0)

γ −i−1

+ πδ(0),δ(0)

−dmδ(0)�
i=−dMδ(0)+1

−1�
j=i

γ − j−1

⎞
⎠

+ λmax(P3)λmax(R̄)

−τmδ(0)�
i=−τMδ(0)

−1�
j=i

γ − j−1

+ λmax(Q3)λmax(R̄)

−dmδ(0)�
i=−dMδ(0)

−1�
j=i

γ − j−1

⎞
⎠δ2

1

= λδ(0),ϑ(0)δ
2
1 . (31)

Combining (30) with (31), the inequality (32) holds

E{V (k, x(k), y(k), δ(k), ϑ(k))}
< γ k

�
max

δ(0)∈S,ϑ(0)∈S
{λδ(0),ϑ(0)}δ2

1 +λmax(S)c2

�
. (32)
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In addition, from (16), (17), and (19), we obtain

l0E{ex(k)T Rex(k) + ey(k)T Rey(k)}
≤ E{V (k, x(k), y(k), δ(k), ϑ(k))}. (33)

Then, it follows from (32) and (33) that

E{ex(k)T Rex(k) + ey(k)T Rey(k)}
<

γ k(maxδ(0)∈S,ϑ(0)∈S{λδ(0),ϑ(0)}δ2
1 +λmax(S)c2)

l0
.

From the inequality (18), the condition E{ex(k)T Rex(k) +
ey(k)T Rey(k)} < δ2

2 holds, which means that the inequality
(14) in Definition 1 is satisfied, that is, the EES (12) meets
the SFTB.

Remark 2: From Theorem 1, a new Lyapunov–Krasovskii
function is established. By using the Lyapunov theory, suf-
ficient conditions are derived to guarantee the SFTB for the
EES (12), and the inequality constraint conditions of bound
δ2

2 are obtained simultaneously.
Since Theorem 1 contains nonlinear terms, the controller

gains cannot be obtained by the linear matrix inequality
(LMI) technology directly. Thus, a new theorem as follows
is proposed to design the controller gains.

Theorem 2: Given a scalar γ > 1, the EES (12) is SFTB,
if there exist matrices Pq,ı � 0, Qq,ı � 0, P2 � 0, P3 � 0,
Q2 � 0, Q3 � 0, �1 � 0, �2 � 0, ε1 � 0, ε2 � 0, S1 �" S1,1 0

∗ S1,2

#
� 0, S2 �

" S2,1 0
∗ S2,2

#
� 0, G1, G2, K̄x(1), and

K̄ y(1), and positive scalars l0, λP , λP2 , λP3 , λP̄3
, λQ , λQ2 , λQ3 ,

λQ̄3
, and λs , such that the following LMIs hold for ∀q ∈ S,

ı ∈ S, and θ ∈ � � {1, 2, 3, 4}:

�(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11 �12 0 0 �15(θ) 0
∗ �22 0 0 0 �26(θ)
∗ ∗ − S1 0 �35(θ) 0
∗ ∗ ∗ − S2 0 �46(θ)
∗ ∗ ∗ ∗ �55 0
∗ ∗ ∗ ∗ ∗ �66

⎤
⎥⎥⎥⎥⎥⎥⎦

≺ 0

(34)

l0 R ≺ Pq,ı ≺ λP R, P2 ≺ λP2 R

P3 ≺ λP3 I, l0 R ≺ Qq,ı ≺ λQ R

Q2 ≺ λQ2 R, Q3 ≺ λQ3 I, S ≺ λs I

λP3�
T
1 �1 ≺ λP̄3

R, λQ3�
T
1 �1 ≺ λQ̄3

R (35)

γ N

�
max

δ(0)∈S,ϑ(0)∈S
{λ̄δ(0),ϑ(0)}δ2

1 + λsc2

�
≤ l0δ

2
2 (36)

with

�15(θ) = 	
G1 Aq − K̄x(θ)Lx,ı 0 0 G1 Bq


T
�26(θ) = 	

G2Cq − K̄ y(θ)L y,ı 0 0 G2 Dq

T

�35(θ) = 	
G1 Eq −K̄x(θ)Mx,ı


T
�46(θ) = 	

G2 Fq −K̄ y(θ)My,ı

T

K̄x(2) = K̄x(1), K̄ y(3) = K̄ y(1)

K̄x(3) = K̄x(4) = K̄x(1) + G1�

K̄ y(2) = K̄ y(4) = K̄ y(1) + G2�

�55 = P̄r,j − G1 − GT
1 , �66 = Q̄r,j − G2 − GT

2

λ̄δ(0),ϑ(0) = λP + λP2

�
1 + π̄δ(0)(τM − τm)

+ πδ(0),δ(0)(τMδ(0) − τmδ(0)) − γ τMδ(0)

+ (π̄δ(0)(γ
τM − γ τm ) + πδ(0),δ(0)

× (γ τMδ(0) − γ τmδ(0) ))/(1−γ )
�
/(1−γ )

+ λQ + λQ2

�
1 + π̄δ(0)(dM − dm)

+ πδ(0),δ(0)(dMδ(0) − dmδ(0)) − γ dMδ(0)

+ (π̄δ(0)(γ
dM − γ dm ) + πδ(0),δ(0)

× (γ dMδ(0) − γ dmδ(0) ))/(1−γ )
�
/(1−γ )

+ λP̄3

�
1 + τMδ(0) − τmδ(0) + (γ τMδ(0)+1

− γ τmδ(0) )/(1 − γ )
�
/(1 − γ )

+ λQ̄3

�
1 + dMδ(0) − dmδ(0) + (γ dMδ(0)+1

− γ dmδ(0) )/(1 − γ )
�
/(1 − γ ).

Then, the vertices of estimator gains are given as

Kx,1 = G−1
1 K̄x(1), Ky,1 = G−1

2 K̄ y(1)

Kx,2 = Kx,1 + �, Ky,2 = Ky,1 + �.

Proof: Considering the inequalities

(P̄r,j − G1)P̄−1
r,j (P̄r,j − G1)

T 
 0
(Q̄r,j − G2)Q̄−1

r,j (Q̄r,j − G2)
T 
 0

we obtain

P̄r,j − G1 − GT
1 
 −G1 P̄−1

r,j GT
1

Q̄r,j − G2 − GT
2 
 −G2 Q̄−1

r,j GT
2 . (37)

Then, define the matrices K̄x(1) � G1 Kx,1 and K̄ y(1) �
G2 Ky,1. Substituting the definition of matrices K̄x(1) and
K̄ y(1) and the inequalities (37) into the inequality (34)
and premultiplying and postmultiplying the obtained matrix
inequalities with diag{I, I, I, I, G−1

1 , G−1
2 } and its trans-

position, the following condition is obtained:

�(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11 �12 0 0 �15(θ) 0
∗ �22 0 0 0 �26(θ)
∗ ∗ −S1 0 �35(θ) 0
∗ ∗ ∗ −S2 0 �46(θ)
∗ ∗ ∗ ∗ −P̄−1

r,j 0
∗ ∗ ∗ ∗ ∗ −Q̄−1

r,j

⎤
⎥⎥⎥⎥⎥⎥⎦

≺ 0

where

�15(θ) = 	
Aq − Kx(θ)Lx,ı 0 0 Bq


T
�26(θ) = 	

Cq − Ky(θ)L y,ı 0 0 Dq

T

�35(θ) = 	
Eq −Kx(θ)Mx,ı


T
�46(θ) = 	

Fq −Ky(θ)My,ı

T

with

Kx(1) = Kx(2) = Kx,1, Kx(3) = Kx(4) = Kx,2

Ky(1) = Ky(3) = Ky,1, Ky(2) = Ky(4) = Ky,2.

In view of the definition (10), we have

αβ�(1) + α(1 − β)�(2) + (1 − α)β�(3)

+ (1 − α)(1 − β)�(4) ≺ 0

which implies that the condition (15) holds. In addition, from
the inequalities (35) and (36), the condition (18) holds, that
is, the EES (12) satisfies the SFTB based on Theorem 1.
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IV. ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is given to demon-
strate the effectiveness of the proposed estimator for discrete-
time Markovian BAM NNs. Assume that δ(k) ∈ S = {1, 2, 3},
ϑ(k) ∈ S = {1, 2}, and k ∈ [1, 20], and the parameters of
Markovian BAM NNs are

A1 = diag{0.70, 0.60, 0.50}
A2 = diag{0.70, 0.80, 0.90}
A3 = diag{0.50, 0.60, 0.80}
C1 = diag{0.70, 0.60, 0.80}
C2 = diag{0.80, 0.70, 0.60}
C3 = diag{0.70, 0.40, 0.40}

B1 =
⎡
⎣ 0.25 0.01 0

0.01 0.28 0
0 0.01 0.19

⎤
⎦

B2 =
⎡
⎣ 0.25 0.01 0

0.01 0.31 0
0 0.01 0.26

⎤
⎦

B3 =
⎡
⎣ 0.15 0.01 0

0.01 0.25 0
0 0.01 0.32

⎤
⎦

D1 =
⎡
⎣ 0.25 0.11 0.01

0.01 0.21 0.01
0.01 0.01 0.20

⎤
⎦

D2 =
⎡
⎣ 0.22 0.11 0.01

0.01 0.24 0.01
0.01 0.01 0.32

⎤
⎦

D3 =
⎡
⎣ 0.21 0.01 0.01

0.01 0.22 0.01
0.01 0.01 0.30

⎤
⎦

E1 = 	
0.31 0.13 0.20


T
E2 = 	

0.21 0.11 0.35

T

E3 = 	
0.31 0.21 0.14


T
F1 = 	

0.12 0.31 0.12

T

F2 = 	
0.13 0.12 0.34


T
F3 = 	

0.31 0.22 0.12

T

Mx,1 =
�

0.08
0.10

�
, Mx,2 =

�
0.09
0.10

�

My,1 =
�

0.07
0.10

�
, My,2 =

�
0.06
0.10

�

Lx,1 =
�

0.40 0.10 0.10
0.10 0.20 0.30

�

Lx,2 =
�

0.30 0.20 0.10
0.10 0.20 0.30

�

L y,1 =
�

0.40 0.10 0.20
0.10 0.30 0.50

�

L y,2 =
�

0.30 0.20 0.20
0.10 0.10 0.50

�
.

The trasition probability matrix 	δ of the Markov chain
δ(k) is assumed as

	δ =
⎡
⎣ 0.3 0.4 0.3

0.5 0.2 0.3
0.4 0.3 0.3

⎤
⎦.

The transition probability matrices 	
δ(k)
ϑ of the Markov

chain ϑ(k) are chosen as

	1
ϑ =

�
0.80 0.20
0.70 0.30

�

	2
ϑ =

�
0.40 0.60
0.60 0.40

�

	3
ϑ =

�
0.20 0.80
0.30 0.70

�
.

The nonlinear function are assumed as g(.) = [0.72tanh(.)
0.56tanh(.) 0.64tanh(.)]T . Based on the assumption that
δ(k) ∈ S = {1, 2, 3} and ϑ(k) ∈ S = {1, 2}, we consider the
cases that d1 ∈ [1, 2], d2 ∈ [2, 3], d3 ∈ [0, 1], τ1 ∈ [2, 3],
τ2 ∈ [1, 2], and τ3 ∈ [0, 1]. Furthermore, suppose that
R = diag{1, 1, 1}, c2 = 0.7687, δ2

1 = 0.06, and γ = 1.02,
and the known matrices

� =
⎡
⎣ 0.21 0.23

0.24 0.25
0.23 0.28

⎤
⎦, � =

⎡
⎣ 0.18 0.21

0.27 0.29
0.22 0.26

⎤
⎦.

In order to facilitate the comparison and the analysis,
according to the SFTB conditions that proposed in Theorem 2,
assuming that the scalar l0 = 1.5, minimizing the value of δ2

2
defined in Definition 1 by solving the LMIs, the estimator
gains are given as

Kx,1 =
⎡
⎣ 0.4823 0.3616

−0.0179 0.7201
−0.4113 1.7834

⎤
⎦

Kx,2 =
⎡
⎣ 0.6923 0.5916

0.2221 0.9701
−0.1813 2.0634

⎤
⎦

Ky,1 =
⎡
⎣ 0.9602 −0.0464

0.2487 0.1266
0.3080 0.4411

⎤
⎦

Ky,2 =
⎡
⎣ 1.1402 0.1636

0.5187 0.4166
0.5280 0.7011

⎤
⎦.

The stochastic noise sequences are defined as ω1(k) =
0.10rand, ω2(k) = 0.09rand, v1(k) = 0.08rand, and v2(k) =
0.11rand, k ∈ [1, 20], where “rand” denotes a random number
between 0 and 1. Choosing the initial conditions of the BAM
NNs x(−3) = [−0.1 −0.1 0.1]T , x(−2) = [−0.1 0.1 −0.1]T ,
x(−1) = [0.1 − 0.1 0.1]T , x(0) = [0.1 0.1 0.1]T , y(−3) =
[0.1 − 0.1 0.1]T , y(−2) = [0.1 0.1 − 0.1]T , y(−1) =
[0.1 − 0.1 0.0]T , y(0) = [0.1 − 0.1 0.1]T , and the initial
conditions of the estimators x̂(−3) = x̂(−2) = x̂(−1) =
x̂(0) = 0 and ŷ(−3) = ŷ(−2) = ŷ(−1) = ŷ(0) = 0,
we have E{ex(ι)

T Rex(ι) + ey(ι)
T Rey(ι)} ≤ δ2

1 = 0.06 for
ι ∈ {−χM ,−χM + 1, . . . , 0}. The trajectories of x(k) and
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Fig. 2. Trajectories of x(k) and its estimation.

Fig. 3. Trajectories of y(k) and its estimation.

Fig. 4. Trajectories of (ex (k)T Rex (k) + ey(k)T Rey(k)))1/2 and δ2.

y(k) and their estimations are shown in Figs. 2 and 3, respec-
tively. The trajectories of (ex(k)T Rex(k) + ey(k)T Rey(k))1/2

and δ2 are shown in Fig. 4. From Fig. 4, the value of

TABLE I

BOUND δ2
2 FOR DIFFERENT NONFRAGILE ESTIMATORS

UNDER THE SAME SYSTEM PARAMETERS

(ex(k)T Rex(k) + ey(k)T Rey(k)))1/2 � δ2 = 0.5294, which
means that the condition (13) in Definition 1 holds, that is,
the EES (12) satisfies the SFTB.

Remark 3: In order to compare the PU model with the IU
model for the estimator, the estimator gains are described by
the IU model as

Kx � K1 + H1�x(k)H2, Ky � K2 + H3�y(k)H4

where K1 and K2 are the controller gains. H1�x(k)H2 and
H3�y(k)H4 are uncertain, where H1, H2, H3, and H4 are
constant matrices with proper dimension, and the time-varying
matrices �x(k) and �y(k) satisfy �x(k)T �x(k) � I and
�y(k)T �y(k) � I , respectively. From Table I, it is observed
that the PU model is less conservative than the IU model
for the estimator gains by comparative experiments under the
same system parameters.

Remark 4: From the process of the simulation, the system
matrices Aδ(k), Bδ(k), Cδ(k), Dδ(k), Eδ(k), and Fδ(k) and the upper
bound �1 of the nonlinear function g(·) are the main parame-
ters that we tried many times to debug with different data to
ensure the existence of solution. Through the simulation, one
of our results validates that the nonlinear constraint �1 needs to
be limited. According to (36), the performance of the proposed
method is mainly affected by the TVDs parameters dδ(k) and
τδ(k), the initial bound δ2

1 of system, the energy bound of noises
c2, the maximum interval N of the finite time, and the scalars
l0 and γ . It follows from Table I that the bound δ2

2 increases
with the aforementioned factors N , l0, γ , and δ2

1 rising under
given delays conditions.

V. CONCLUSION

In this article, the finite-time state estimation for Markovian
BAM NNs with asymmetrical SMD TVDs and inconstant
measurements has been investigated. A new TVDs mode
where the time-delay interval was SMD has been proposed.
A more general measurement mode has been adopted, which
was a measurement environment-dependent Markov chain and
the transition probability was SMD. A PU model has been
used to reduce the conservative property and improve the
robustness of the estimator. By constructing a new Lyapunov–
Krasovskii functional function, sufficient conditions have been
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derived to ensure that the EES was SFTB. A simulation
result has been provided to illustrate the effectiveness of the
method. In summary, this article has proposed a more general
model of BAM NNs, and a more detailed delay model has
been analyzed, which can be easily applied to other physical
models.
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