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A B S T R A C T   

Thin-walled deployable composite hinges (DCHs) can achieve foldable and deployable functions by storing and 
releasing strain energy, which have great application potential in deployable structures, such as satellite an
tennas and solar wings. This paper presented multi-objective optimisation designs for DCHs. Firstly, an opti
misation problem was established to obtain three conflicting objectives, minimising the peak folding moment, 
maximising the peak torsional moment and minimising the mass. Three design variables and one constraint had 
been considered. Moreover, four surrogate models were employed, including response surface methodology 
(RSM) and machine learning models. Root mean square error (RMSE), mean absolute error (MAE) and corre
lation coefficient (R2) were used to determine the surrogate model with the highest accuracy. Furthermore, four 
state-of-the-art Genetic Algorithms were benchmarked to obtain the optimal designs. The mimicked inverted 
generational distance (mIGD) was applied to determine the best optimiser. The research results have significance 
to practical engineering application of DCHs.   

1. Introduction 

Due to the limitation of launch vehicles, there are many structures 
with folding and deployable mechanism on the spacecraft, such as 
synthetic aperture radars (SARs), solar arrays and booms, etc. These 
structures must be packed into compact volume for launching and also 
be able to deploy in the operational state [1–3]. Previous solutions used 
rigid rod assemblies with mechanical hinges which were usually driven 
by electric motors. Although these designs can satisfy simultaneously 
multiple requirements for stiffness, stability and deployment repeat
ability, mechanical hinges and electric motors increase weight of the 
spacecraft. For substiting traditional mechanical deployable structures, 
light weight deployable composite structures have attracted widespread 
attention [4–10]. The circular composite tube with symmetrical slots on 
both sides is one of the classical deployable composite hinges (DCHs). 
Tubular DCHs have an integral hinge mechanism which can realize the 
foldable and deployable functions, as shown in Fig. 1. It can take 
advantage of the elastic strain energy stored during folding to realize 
automatic deployment without electric motor driving; after deployment, 
it also can provide the locking force required by the deployable structure 
through its own stiffness without additional locking device. DCHs have 

several advantages over traditional mechanical hinges, including light
weight, self-deployment, self-locking and good latching accuracy, etc 
[11–15]. Therefore, DCHs have good engineering application prospects, 
and it is necessary to optimise them to obtain the optimal designs. 

Coupling surrogate model (SM) and Genetic Algorithm (GA) tech
nology, as a hybrid optimisation method, has been widely employed in 
many fields of engineering [16–24]. In this technology, a SM which can 
determine the relationship between design variables and objectives is 
firstly obtained, and then the SM and a GA are coupled to obtain the 
optimal design solutions. SMs, also called metamodeling, mainly include 
the response surface methodology (RSM) model and machine learning 
models. The RSM model is a widely used statistical tool that is able to 
find the relationship between design variables and objectives through 
statistical fitting method to establish predictive equations, in which 
numerous design variables and their collaborations jointly affect the 
response results [25]. The most widely used RSM model is the Box- 
Behnken which provides considerable fitting accuracy for most prob
lems. However, the RSM exhibits weak performance in describing highly 
nonlinear problems, which can be solved by applying machine learning 
models. In recent years, machine learning models have become an 
important tool for accurately modeling higher-order and nonlinear 
problems. The key concept of machine learning models is to learn useful 
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patterns from previous dataset and to generate rigorous models by 
means of mapping data [26]. 

GAs are one of the most popular categories of optimisation tech
niques, especially in engineering design, because they can find optimal 
designs in a large and complex search space [27]. Multi-objective opti
misation designs can be solved by two methods, namely the weighted 
average method and the Pareto front solution. The weighted average 
method reduces multiple objectives to a single objective by utilising 
Weighted Sum Method, which requires prior knowledge of the relative 
importance of all objectives. However, the traditional weighted average 
method cannot solve multi-objective optimisation designs effectively. 
Therefore, the Pareto front solution is generally considered to be the 

most interesting category. Designers can obtain a better understanding 
of the domain according to the Pareto front, from which they can select 
design solutions that match other considerations not included in the 
optimisation design [28]. A recent literature [29] exhibits that repre
sentative GAs based on dominance strategy and decomposition strategy 
are suitable for different optimisation problems. Therefore, in order to 
better balance the convergence and diversity of multi-objective opti
misation problems, especially many-objective (4–15 objectives), some 
novel hybrid multi-objective GAs have been proposed, which combine 
dominance strategy with decomposition strategy. 

In summary, it can be concluded that DCHs have many advantages 
over traditional mechanical hinges. However, few scholars employed 

Nomenclature 

d(ν,O) the minimum Euclidean distance between v and the points 
in O 

D end-section diameter, mm 
E1 elastic modulus of composite ply in longitudinal direction, 

GPa 
E2 elastic modulus of composite ply in transverse direction, 

GPa 
G12 in-plane shear modulus of composite ply, GPa 
l slot length, mm 
L total length, mm 
m mass, g 
M1 peak folding moment, N⋅mm 
M2 peak torsional moment, N⋅mm 
M∗ a set of points along the mimicked Pareto front 
N number of FEA values 
P number of input variables 
S12 in-plane shear strength of composite ply, MPa 
t thickness of total composite plies, mm 
w slot width, mm 
x input data 
xnorm normalised of input data 
xmin minimum of input data 
xmax maximum of input data 
X1t tensile strength of composite ply in longitudinal direction, 

MPa 
X2c compressive strength of composite ply in longitudinal 

direction, MPa 
Y1t tensile strength of composite ply in transverse direction, 

MPa 
Y2c compressive strength of composite ply in transverse 

direction, MPa 
Y predicted value 
Yi,FEA ith FEA value 
Yi,pre ith predicted value by surrogate model 
YFEA average value of all FEA values 
O a set of points from the currently obtained Pareto front 
α torsional failure angle, deg 
β0 regression coefficient 
βi coefficient 
βii coefficient 
βij coefficient 
βiii coefficient 
βiij coefficient 
ρ density of composite, g/cm3 

χ2 chi square statistics 
ν12 poisson’s ratio 
ANOVA analysis of variance 
AP accuracy prediction 

APD angle penalized distance 
ANN artificial neural network 
C cost of constraint violation 
CEC’09 IEEE congress on evolutionary computation 2009 
CV coefficient of variation 
d1 Willmott’s index of agreement 
DCH deployable composite hinge 
DF degree of freedom 
DTLZ Deb-Thiele-Laumanns-Zitzler 
FEA finite element analysis 
GA Genetic Algorithm 
GD generational distance 
HV hyper volume 
IDG inverted general distance 
mIGD mimicked inverted general distance 
min_samples_split the minimum number of samples required to split 

internal nodes 
max_depths the maximum depth of regression trees 
MOEA/D multi-objective evolutionary algorithm based on 

decomposition 
MOEA/DD multi-objective evolutionary algorithm based on 

dominance and decomposition 
MTS multiple trajectory search 
MAE mean absolute error 
MSE mean square error 
MS maximum spread 
MPE mean predictive error 
n_estimators the number of regression trees 
ε-svr epsilon regression 
nu-svr nu regression 
eps-svr bound-constraint regression 
R2 correlation coefficient 
Adj-R2 adjusted correlation coefficient 
Pred-R2 predicted correlation coefficient 
ReLU Rectified Linear Unit 
HYBRID hybrid fractional error function 
NSGA-II nondominated sorting genetic algorithm II 
NSGA-III non-dominated sorting genetic algorithm III 
SPEA-II strength pareto evolutionary algorithm II 
SAR synthetic aperture radar 
SM surrogate model 
SVM support vector machine 
SVR support vector regression 
SS sum of square 
RBF radial basis function 
RF random forest 
RMSE root mean square error 
RMS response surface methodology 
RVEA reference vector guided evolutionary algorithm  
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coupling SM and GA technology to obtain the optimal designs of DCHs 
(such as the maximum peak torsional moment, the minimum peak 
folding moment and the minimum mass). In this paper, based on the 
dataset of folding and torsional behaviours of DCHs calculated from 
finite element analysis (FEA) method, four SMs were obtained to 
determine the relationship between the design variables and the ob
jectives. These four SMs employed for the benchmarking include: Box- 
Behnken design of the RSM model and three most popular machine 
learning models, namely artificial neural networks (ANN), support 
vector regression (SVR) and random forest (RF). The four SMs were 
ranked according to the prediction accuracy by three statistical error 
functions: root mean square error (RMSE), mean absolute error (MAE) 
and correlation coefficient (R2). Then, based on the SM with the highest 
prediction accuracy and the analytical formula of mass, four state-of- 
the-art GAs were benchmarked to solve the multi-objective optimisa
tion designs of the peak folding moment, the peak torsional moment and 
the mass of DCHs. The optimal design solutions of DCHs were found. The 
GAs employed for benchmarking include: strength pareto evolutionary 
algorithm II (SPEA-II) which generally performs well on all problem 
sets, and three popular hybrid GAs, namely non-dominated sorting ge
netic algorithm III (NSGA-III), multi-objective evolutionary algorithm 
based on dominance and decomposition (MOEA/DD) and reference 
vector guided evolutionary algorithm (RVEA). Each GA was indepen
dently run 30 cycles to eliminate the effect of the randomness of the 
initial population. The best performing optimiser was quantitatively 
determined by applying mimicked inverted general distance (mIGD). 

The paper is organised as follows: the formulation and the method
ology of the multi-objective optimisation designs are detailed in Section 
2; the benchmarking results of the four SMs are summarised in Section 3; 
the benchmarking results of the four state-of-the-art GAs are discussed in 
Section 4; the optimal design solutions are analysed in Section 5; three 
key findings are summarised in Section 6. 

2. Optimal design methods of tubular deployable composite 
hinges 

2.1. Problem description 

In the folding process of DCHs, the peak folding moment should be as 
small as possible to avoid excessive impact. In working state, DCHs may 

be subjected to torsional excitation. Therefore, DCHs need to have 
enough peak torsional moment to resist external torsion excitation. In 
addition, the mass of DCHs should be as small as possible to reduce the 
cost of its application in space missions. In summary, the maximum peak 
torsional moment, the minimum peak folding moment and the mini
mum mass were set as the optimisation objectives of DCHs. In order to 
resist the possible torsional deformation of DCHs in working state, the 
torsional failure angle was set as a constraint. 

Many investigations showed that geometric parameters of DCHs 
have significant effects on folding behaviour, torsional behaviour and 
mass. Therefore, three geometric parameters were taken into 

Fig. 1. Folding deformation process of the tubular DCH.  

Fig. 2. Geometric model of the tubular DCH.  
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consideration as design variables, as follows (shown in Fig. 2):  

• the end-section diameter, D;  
• the slot width, w;  
• the slot length, l. 

The multi-objective optimisation problem of DCHs was formulated in 
a constrained format in Eq. (1) as, 

min M1(D, w, l), m(D, w, l)
maxM2(D, w, l)

subjectto :{
g(D, w, l) = α − αmin > 0,

xi⩽xi⩽xi(i = 1, 2, 3),

(1)  

where x = [x1, x2, x3] are the design variables, M1(D, w, l) and 
M2(D, w, l) are respectively the peak folding moment and the peak 
torsional moment of DCHs, m is the mass of DCHs, g(D, w, l) > 0 is the 
constraint of the torsional failure angle of DCHs, α and αmin are the 
torsional failure angle and the minimum torsional failure angle, 
respectively, and xi and xi are the upper and lower limits of the domain, 
respectively. 

The mass of a DCH is expressed in Eq. (2) as, 

m = tρD
(

πL − 2larcsin
w
D
−

1
2

πwarcsin
w
D

)

, (2)  

where ρ is the density of composite. 
Penalty techniques are general methods to solve constraints in 

optimisation problems. However, penalty techniques require user- 
defined problem-dependent parameters, which usually have a negative 
effect on the performance of the GAs. Adaptive penalty techniques 
automatically set the values of all involved parameters using the feed
back from the search process without user intervention. Therefore, 
adaptive penalty techniques [30–32] have been attracted widespread 
attention. An adaptive penalty technique for dealing with the con
straints in optimisation problems was applied in this paper. A penalty 
coefficient was set in the fitness function. For any feasible solution, the 
penalisation coefficient was 1; for any unfeasible solution, the penal
isation coefficient was greater than 1. Furthermore, the penalisation 

coefficient was increased with the increased magnitude of the constraint 
violation. The reader refers to Barbosa et al. [32] for a detailed intro
duction to the adaptive penalty technique. 

2.2. Methodology 

The multi-objective optimisation model of DCHs was obtained by 
using coupling SM and GA technology. The detailed modeling process is 
as follows (shown in Fig. 3):  

(1) Stage I: The FEA method was utilised to obtain the dataset 
required by the SMs. The dataset used in this study is taken from 
the literature [15]. Su et al. [15] used ABAQUS/Explicit solver to 
simulate the folding and torsion processes of DCHs, in which four- 
node reduced integrated shell elements (S4R) were employed. 
The Hashin failure criterion was selected to determine the dam
age of DCHs during the folding and torsion deformation process. 
The domain and the type of each design variable of the optimi
sation problem are summarised in Table 1. The minimum 
torsional failure angle was set to 10◦. In order to achieve a 
comprehensive Pareto front and evaluate the performance of 
each benchmarked GA, the design variables were set as contin
uous variables. The specifications and properties of DCHs and 79 
FEA results are listed in Table A1 and A2, respectively.  

(2) Stage II: the 79 FEA results were used as the dataset to establish 
the SMs. The SMs utilised in this research include RSM model and 
three machine learning models, namely ANN, SVR and RF. The 
prediction results of the four SMs were compared by three sta
tistical error functions, including RMSE, MAE and R2.  

(3) Stage III: the SM with the highest prediction accuracy and the 
analytical formula of mass were coupled with GAs to optimise 

Fig. 3. Optimal program flowchart of DCHs.  

Table 1 
Design space of the optimisation problem.  

Design variable Type Lower bound Upper Bound 

D (mm) continuous 55 65 
w (mm) continuous 30 50 
l (mm) continuous 150 210  
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DCHs. Bai et al. [33] pointed out that benchmarking is necessary 
when the relationship between the shape of the codomains and 
the domain is unknown. Benchmarking process helps to under
stand the nature of the optimisation problem and to determine 
the best performance of the GA. The benchmarking results from 
IEEE congress on evolutionary computation 2009 (CEC’09) [34] 
were applied to select the optimisers for the optimisation of the 
peak folding moment, the peak torsional moment and the mass of 
DCHs. The multi-objective GAs benchmarks include: a general 
optimiser SPEA-II and three popular hybrid GAs, namely NSGA- 
III, MOEA/DD and RVEA. 

For Stage II, parameter tuning for the three machine learning models 
is very important to obtain the desired results. In order to test the three 
machine learning models fairly, the grid search method was employed to 
tune parameters in the best way to obtain the best results. For Stage III, 
the SM with the highest accuracy and the analytical formula of mass 
were utilised to evaluate all individuals from the population. In order to 
perform a fair test across the four Gas, the same genetic operator types 
were used: selection, crossover and mutation, as well as the same 

operator rate those were selected for the CEC’09 benchmarking [34]. 

3. Determining the best surrogate model 

3.1. Response surface methodology 

RSM is an experimental statistical modeling technique for multiple 
regression analysis. RSM can determine the relationship between input 
and output of a complex system. Typical RSM models include: fractional 
factorial designs, the steepest rise stroke, Doehlert and blend designs, 
Box-Behnken and central composite design [35]. The most widely used 
Box-Behnken design (Design-Expert Software, Version 8.0.6, from Stat- 
Ease, Inc.) was selected in this paper to obtain the relationship between 
design variables and objectives. The third-order regression equation 
proposed according to Box-Behnken design is as follows: 

Y = β0 +
∑

βixi+
∑

βiix2
i +

∑∑
βijxixj +

∑
βiiix3

i +
∑∑

βiijx2
i xj+ε,

(3) 

Where Y is the predicted value, β0 is the regression constant, βi, βii, 
βij, βiii and βiij are all coefficients, and ε is the random error. 

The third-order equation with the three design variables can be ob
tained in Eq. (4) as,   

The third-order equations of three objectives (i.e. M1(D, w, l), 
M2(D, w, l) and g(D, w, l)) of DCHs optimisation are listed in Appendix 
B. 

Analysis of variance (ANOVA) was carried out to evaluate the 

Table 2 
ANOVA analyses for the dataset of Box-Behnken design.  

Source DF Peak folding moment Peak torsional moment Torsional failure angle 

SS F-value p-value SS F-value p-value SS F-value p-value 

Model 19 7.753E + 010  130.21 < 0.0001 1.669E + 010  417.23 < 0.0001  968.70  65.48 < 0.0001 
A-D 1 5.879E + 008  18.76 < 0.0001 3.317E + 007  15.76 0.0002  19.93  25.60 < 0.0001 
B-w 1 8.085E + 008  25.80 < 0.0001 2.582E + 007  12.27 0.0008  24.80  31.85 < 0.0001 
C-l 1 9.454E + 007  3.02 0.0865 1.551E + 006  0.74 0.3935  0.39  0.50 0.4801 
AB 1 2.957E + 009  94.36 < 0.0001 6.016E + 008  285.78 < 0.0001  423.22  543.54 < 0.0001 
AC 1 1.020E + 009  32.56 < 0.0001 2.212E + 008  105.06 < 0.0001  135.87  174.49 < 0.0001 
BC 1 2.377E + 009  75.85 < 0.0001 1.934E + 006  0.92 0.3410  11.58  14.87 0.0002 
A2 1 7.667E + 007  2.45 0.1220 1.270E + 008  60.32 < 0.0001  56.94  73.12 < 0.0001 
B2 1 2.710E + 009  86.48 < 0.0001 2.603E + 007  12.37 0.0007  22.86  29.35 < 0.0001 
C2 1 5.459E + 008  17.42 < 0.0001 3.019E + 007  14.34 0.0003  11.87  15.24 0.0002 
ABC 1 6.093E + 007  1.94 0.167 1.097E + 008  52.12 < 0.0001  44.74  57.46 < 0.0001 
A2B 1 2.585E + 007  0.82 0.3666 7.414E + 007  35.22 < 0.0001  36.14  46.41 < 0.0001 
A2C 1 2.214E + 008  7.06 0.0096 1.067E + 007  5.07 0.0273  4.09  5.25 0.0248 
AB2 1 1.232E + 007  0.39 0.5326 2.931E + 008  139.22 < 0.0001  153.60  197.27 < 0.0001 
AC2 1 1.561E + 008  4.98 0.0286 1.066E + 006  0.51 0.4788  1.31  1.68 0.1987 
B2C 1 2.924E + 007  0.93 0.3372 7.306E + 006  3.47 0.0664  0.51  0.66 0.4203 
BC2 1 47389.50  1.512E-003 0.9691 6.875E + 006  3.27 0.0747  6.13  7.88 0.0064 
A3 1 2.751E + 007  0.88 0.3518 1.091E + 007  5.18 0.0257  1.91  2.46 0.1212 
B3 1 1.329E + 007  0.42 0.5169 3.277E + 007  15.57 0.0002  15.08  19.36 < 0.0001 
C3 1 56801.13  1.813E-003 0.9662 1.445E + 006  0.69 0.4101  0.53  0.68 0.4121 
Residual 75 2.350E + 009   1.579E + 008    58.40   
Cor total 94 7.988E + 010   1.685E + 010    1027.10   
Std. Dev  5597.94   1540.91    0.88   
Mean  64634.85   27250.16    13.56   
CV%  8.66   5.32    6.51   
PRESS  3.906E + 009   2.624E + 008    97.33   
Adeq. Prec  46.54   81.09    33.54   
R2  0.971   0.991    0.943   
Adj-R2  0.963   0.988    0.929   
Pred-R2  0.951   0.984    0.905   

SS = Sum of square, DF = Degree of freedom. 

Y = β0 + β1x1 + β2x2 + β3x3 + β11x2
1 + β22x2

2 + β33x2
3 + β12x1x2 + β13x1x3 + β23x2x3 + β111x3

1

+β222x3
2 + β333x3

3 + β112x2
1x2 + β113x2

1x3 + β221x2
2x1 + β223x2

2x3 + β331x2
3x1 + β332x2

3x2 + ε.
(4)   
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prediction accuracy and significance of the regression models. The re
sults show that the regression equations in Appendix B fully reflect the 
relationship between the design variables and the objectives. Table 2 
shows the ANOVA values of the peak folding moment, the peak torsional 
moment and the torsional failure angle. The F-test compares the source’s 
mean square to the residual mean square, while p value is the probability 
of the observed F value. These two values are applied to examine the 
significance of the regression models. A higher F value and a lower p 
value (<0.05) can prove that the regression models are significant. Ac
cording to Table 2, the F value of the three regression models is higher 
and the p value is lower, so the significance of the three regression 
models can be inferred. Adequate precision (AP) parameter value above 

4 indicates the regression model is effective. Because it can measure the 
signal to noise ratio and compare the range of the predicted value to the 
average prediction error. The adequate precision (AP) parameter values 
of the three regression models are 46.54, 81.09 and 33.54 respectively, 
indicating that the signal is sufficient. In addition, the coefficient of 
variance (CV) is the standard error ratio estimated by the mean of the 
response, and it shows the reproducibility of the regression model. If the 
CV value is not greater than 10%, it can be concluded that the regression 
model is reproducible. The CV values of the three regression models are 
respectively 8.66%, 5.32% and 6.51%, indicating that the three 
regression models are reproducible. The R2 of the three regression 
models are 0.971, 0.991 and 0.943 respectively, which shows that the 

Fig. 4. Residual distribution diagram against the test steps: (a) Peak folding moment (b) Peak torsional moment (c) Torsional failure angle.  

Fig. 5. Box-Cox charts: (a) Peak folding moment (b) Peak torsion moment (c) Torsional failure angle.  

Fig. 6. Perturbation charts: (a) Peak folding moment (b) Peak torsion moment (c) Torsional failure angle.  
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predicted values are in good agreement with the FEA values. Besides, the 
low difference between Adj-R2, Pred-R2 and R2 shows that all factors are 
significant and effective for the three regression models. 

Fig. 4 shows the residual distribution of 79 FEA values. The results 
indicate that the error between the FEA values and predicted values is 
less than ± 3%, and the input value and output value are in good 
agreement with each other. Table 5 shows the Box-Cox graphs of the 
folding behaviour and the torsional behaviour of DCHs, which helps 
determine the most appropriate power transfer function to apply the 
response. In the Box-Cox chart, the lowest point represents the best 
Lambda value where the minimum sum of squares is created in the 
converted model (shown in Fig. 5). When the ratio of maximum to 
minimum response is greater than 3, it will have a greater ability to 
improve the model utilising power functions. The F value in ANOVA and 
perturbation plot can reflect the ability of each factor to affect the 
response. According to Table 2 and Fig. 6, the F values of the end-section 
diameter and the slot width of the three regression models are larger, 
and the three objectives change significantly with the change of the end- 
section and the slot width. It is indicated that the end-section diameter 
and the slot width have a greater influence on the three objectives. On 
the contrary, the slot length has little effect on the three objectives. 

In summary, the third-order regression equations have high 

prediction accuracy for the peak folding moment, the peak torsional 
moment and the torsional failure angle of DCHs. In addition, the sig
nificance and effectiveness of the second-order regression equations are 
investigated by ANOVA. Although the second-order regression equa
tions are also significant, they will not be discussed because of low 
prediction accuracy. 

3.2. Machine learning models 

As substitutes for the RSM model, machine learning models are 
increasingly used in engineering practice. In this paper, three most 
popular machine learning models (i.e. ANN, SVR and RF) were 
employed to predict the peak folding moment, the peak torsional 
moment and torsional failure angle of DCHs. The schematic diagrams of 
the three machine learning models are shown in Fig. 7. Handhal et al. 
[36] and Shozib et al. [37] introduced the detailed mechanisms of ANN, 
SVR and RF. In addition, parameter tuning for machine learning model 
is essential to obtain desired results. The grid search method was 
employed to tune parameters in the best way to obtain the best predicted 
results. 

Fig. 7. Schematic diagrams of popular machine learning models: (a) ANN (b) SVR (c) RF.  
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3.2.1. Data normalisation 
Data normalisation is necessary for organising the dataset to reduce 

redundancy and improve dataset integrity. There are a lot of types of 
normalisation methods, such as StandardScaler, MinMaxScalar, 
RobustScaler and DecimalScaler. The choice of a normalisation method 
depends on the application and the algorithm that uses the normalised 
dataset. In this research, the dataset was normalised in the range [0, 1] 
applying MinMaxScalar function according to the Eq. (5): 

xnorm =
x − xmin

xmax − xmin
, (5)  

Where xnorm, x, xmin and xmax are the normalised, initial, minimum, and 
maximum of input data, respectively. 

3.2.2. Artificial neural network 
ANN is an information processing system based on mimicking the 

structure and function of biological neural systems of human brain, and 
it simulates the activity of neurons by mathematical model. ANN has 
obvious advantages in processing fuzzy data, random data and nonlinear 
data, especially for large-scale, complex structure and uncertain infor
mation system. The ANN model was established by employing the 
dataset in Appendix A.2. This dataset was randomly divided into 
training set and testing set, 80% and 20% respectively. For the ANN 
model, the optimal network configuration is (3-20-20-3), in which the 
number of hidden layers is 2, the number of nodes in each hidden layer is 
20, the number of epochs is 1000, and the validation split is 0.2. 
Rectified Linear Unit (ReLU) was used as the activation function and 
Sigmoid was utilised as the output transfer function. 

3.2.3. Support vector regression 
Support vector machine (SVM) is a set of supervised kernel-based 

machine learning algorithms. It can be employed to classification and 
regression problems. When the dataset is small, the SVM still has high 
prediction accuracy. SVM utilises two concepts to obtain an optimal 
scheme: optimal hyperplane classification and kernel function. The SVR 
is the SVM conversion for regression analysis. Three conversions of SVM 
are performed for regression problems: epsilon regression (ε-svr), nu 
regression (nu-svr), and bound-constraint regression (eps-bsvr). In this 
paper, ε-svr with radial basis function (RBF) kernel was applied to obtain 
the SM of the peak folding moment, the peak torsional moment and the 
torsional failure angle of DCHs. Three hyperparameters need to be tuned 
to obtain the optimal SVR model, namely the cost of constraint violation 
(C), epsilon (ε) and gamma (γ). The optimal parameter settings were 
obtained by using the grid search method, and C = 0.7, ε = 0.001, and γ 
= 2 were determined. 

3.2.4. Random forest 
RF is a parallel ensemble learning algorithm for dealing with both 

regression and classification problems. It utilises multiple decision trees 
and a bootstrap aggregation technique. If there is a feature missing 
problem in the dataset, RF can still maintain prediction accuracy and 
computational efficiency. In addition, it can also resist the overfitting 
problem and has advantages when handling large dataset with higher 
dimensionality. RF introduces random attribute selection strategy in the 
training process of the decision tree. The initial performance of RF is 
often poor, but with the increase of the number of individual learners, 
the error of RF will converge to a lower level. Consistent with the ANN 
model, 80% of the dataset were used as training set and the remaining 
20% were utilised as testing set in the RF model. Three hyperparameters 
must be tuned in the RF model to obtain the optimal results, namely the 
number of regression trees (n_estimators), maximum depth of regression 
trees (max_depths) and minimum number of samples required to split 
internal nodes (min_samples_split). In this study, the best parameters for 
the RF model are n_estimators = 30, max_depths = 5 and min_sam
ples_split = 10. 

3.3. Accuracy evaluation 

An indispensable part of benchmarking SMs is evaluating the pre
diction accuracy to determine the SM with the highest prediction ac
curacy. Different statistical error functions can be employed to evaluate 
the performance of SMs, as shown in Table 3. In this paper, RMSE, MAE 
and R2 were utilised in regression analysis to compare the prediction 
accuracy of SMs. RMSE is the average of the square root of the error 
between the predicted value and the FEA value. MAE is the average 
absolute error between the predicted value and the FEA value. The 
smaller the RSME and MAE, the higher prediction accuracy of SMs. R2 is 
a value varying between [0, 1], and the closer it is to 1, the smaller the 
error between the predicted value and the FEA value. 

Table 4 shows the values of statistical error functions to compare 
prediction accuracy of the four SMs. In order to eliminate the influence 
of randomness of the initial population, the three machine learning 
models respectively performed 20 predictions and the average values of 
prediction results were obtained. It is shown in Table 4 that RMSE and 
MAE of the ANN model are lower than those of the RF model, but higher 
than those of the RSM model and the SVR model for the peak folding 

Table 3 
Statistical error functions.  

Error function Equation Number 

Root mean square error [38] 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
Yi,FEA − Yi,pre

)2
√ (6) 

Mean square error [39] MSE =
1
N
∑N

i=1

(
Yi,FEA − Yi,pre

)2  (7) 

Mean absolute error [40] MAE =
1
N
∑N

i=1

⃒
⃒Yi,FEA − Yi,pre

⃒
⃒ (8) 

Mean predictive error (%)  
[41] MPE(\% ) =

100
N

∑N
i=1

⃒
⃒
⃒
⃒
Yi,FEA − Yi,pre

Yi,FEA

⃒
⃒
⃒
⃒

(9) 

Chi square statistics (χ2) [42]  
χ2 =

∑N
i=1

(
Yi,pre − Yi,FEA

)2

Yi,pre  

(10) 

Correlation coefficient (R2)  
[43] R2 = 1 −

∑N
i=1

(
Yi,pre − Yi,FEA

)2

∑N
i=1

(
Yi,FEA − YFEA

)2  

(11) 

Adjusted correlation 
coefficient (Adj-R2) [44] Adj − R2 = 1 −

[(
1 − R2)(N − 1)

N − P − 2

]
(12) 

Willmott’s index of 
agreement (d1) [45] 

d1 =

1 −

∑N
i=1

⃒
⃒Yi,pre − Yi,FEA

⃒
⃒

∑N
i=1

⃒
⃒Yi,FEA − Ye

⃒
⃒+

⃒
⃒Yi,pre − Ye

⃒
⃒

(13) 

Hybrid Fractional Error 
Function [46] HYBRID =

100
N − P

∑N
i=1

(
Yi,FEA − Yi,pre

)2

Yi,FEA  

(14) 

Note: N is the number of FEA values, Yi,FEA is the ith FEA value, Yi,pre is the ith 

predicted value by SMs, YFEA is the average value of all FEA values and P is the 
number of input variables. 

Table 4 
Overall performance metrics of RSM and three machine learning methods.  

Models Peak folding moment Peak torsional moment Torsional failure angle 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

RSM 4973 3757  0.971 1289 997  0.991  0.784  0.600  0.943 
ANN 7448 5640  0.934 2053 1632  0.976  1.251  0.936  0.855 
SVR 4949 3075  0.971 1427 624  0.988  0.858  0.383  0.932 
RF 8004 6332  0.924 2770 2074  0.957  1.608  1.177  0.760  

T.-W. Liu et al.                                                                                                                                                                                                                                  



Composite Structures 280 (2022) 114757

9

Table 5 
Parameter definition for four state-of-the-art Genetic Algorithms.  

Algorithms NSGA-III MOEA/DD RVEA SPEA-II 

No. of 
populations 

200, 600, 1000, 1500, 2000 and 
3000 

200, 600, 1000, 1500, 2000 and 3000 200, 600, 1000, 1500, 2000 and 
3000 

200, 600, 1000, 1500, 2000 and 
3000 

No. of 
generations 

100 – 100 100 

Stop criterion Reach the max. generation (100) Reach the total number of fitness 
evaluation 

Reach the max. generation (100) Reach the max. generation (100) 

Crossover rate 0.7 0.7 0.7 0.7 
Mutation rate 0.08 0.08 0.8 0.08 
Selector operator Well-spread reference points Steady-state selection scheme Angle-based selection criterion Environmental and mating 

selection 
Elitism operator Active Active Active Active  

Fig. 8. Scatter plot of the predicted versus FEA values for the RSM model using the Box-Behnken plot: (a) Peak folding moment (b) Peak torsional moment (c) 
Torsional failure angle. 

Fig. 9. Scatter plot of the predicted versus FEA values for the ANN model: (a) Peak folding moment (b) Peak torsional moment (c) Torsional failure angle.  

Fig. 10. Scatter plot of the predicted versus FEA values for the SVR model: (a) Peak folding moment (b) Peak torsional moment (c) Torsional failure angle.  
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moment, the peak torsional moment and the torsional failure angle; R2 

of the ANN model is higher than that of the RF model, but lower than 
that of the RSM model and the SVR model. These results indicate that the 
RSM model and the SVR model rank the top two, the ANN model is the 
third place, while the prediction accuracy of the RF model is considered 
to be the lowest among the four benchmarked SMs. Both the RSM model 
and the SVR model have very low RMSE and MAE, and high R2, indi
cating that both models have high prediction accuracy. It is worth 
mentioning that there are interesting results when comparing the pre
diction accuracy of the RSM model and the SVR model. Due to the 

excellent performance of the RSM model and the SVR model, different 
results can be obtained through different statistical error functions. For 
example, for the torsional failure angle, RMSE of the RSM model is lower 
than that of the SVR model, R2 is higher than that of the SVR model, but 
MAE of the RSM model is higher than that of the SVR model. But on the 
whole, there is little difference between the two models, and both have 
high prediction accuracy. Hence, it is considered that the RSM model 
and the SVR model rank first side by side. According to the prediction 
accuracy, the four benchmarked SMs can be ranked as follows: RSM =
SVR > ANN > RF. 

Fig. 11. Scatter plot of the predicted versus FEA values for the RF model: (a) Peak folding moment (b) Peak torsional moment (c) Torsional failure angle.  

Fig. 12. Comparison of Pareto fronts for different populations sizes: (a) NSGA-III (b) MOEA/DD (c) RVEA (d) SPEA-II.  
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Figs. 8 to 11 depict the scatter plots of the results of the RSM model 
and the three machine learning models, in which the results of the three 
machine learning models include training and testing data. The FEA 
value is the abscissa (horizontal axis) for each figure whereas the ordi
nate (vertical axis) represents the predicted value based on the RSM, 
ANN, SVR and RF models. The black oblique line is the true-prediction 
line where the predicted value is equal to the FEA value. The points 
closer to the black oblique line show the better prediction accuracy. It 
can be easily seen from Figs. 9 to 11 that the RSM model and the SVR 
model exhibit smaller deviations from the black diagonal than the ANN 
model and the RF model. Therefore, the prediction accuracy of the RSM 
model and the SVR model are better than that of the ANN model and the 
RF model, which is consistent with the conclusion of the above para
graph. In addition, it can be seen from Figs. 9 to 11 that training data and 
testing data of the three machine models have similar deviations from 
the black oblique line. There is no overfitting problem, which proves the 
effectiveness of the three machine learning models. 

4. Optimisation of tubular deployable composite hinges 

4.1. State-of-the-art Genetic Algorithms 

For the multi-objective optimisation problem in this research, three 
popular hybrid GAs (i.e. NSGA-III, MOEA/DD and RVEA) and a general 
optimiser SPEA-II were applied to optimise DCHs. Bai et al. [33] intro
duced the detailed mechanisms and parameters of SPEA-II. The hyper
parameters of four state-of-the-art GAs utilised in this optimisation 
problem are listed in Table 5, in which the selection, crossover and 
mutation types are default settings. In order to perform a fair test across 
the four GAs, the same genetic operator types of selection, crossover and 
mutation were used, as well as the same operator rate which is selected 
for the CEC’09 benchmarking [34]. 

4.1.1. Non-dominated sorting genetic algorithm III 
NSGA-III is a GA using reference-point-based nondominated sorting 

method and was first introduced by Deb and Jain [47,48] in 2014. The 
basic framework of NSGA-III is similar to that of nondominated sorting 
genetic algorithm II (NSGA-II), but its selection operator and elitism 
mechanism have changed significantly. The maintenance of diversity 
among populations in NSGA-III is achieved by providing and adaptively 
updating many well-spread reference points, rather than through the 
crowding distance method in NSGA-II. NSGA-III focuses on finding an 
associated Pareto optimal solution for each reference point. It can 
identify useless reference points and update reference points adaptively, 
so the calculation efficiency is higher. For detailed information about 
NSGA-III, the readers refer to Deb and Jain [47,48]. 

4.1.2. Multi-objective evolutionary algorithm based on dominance and 
decomposition 

In 2015, Li et al. [49] proposed another leading hybrid multi- 
objective GA, MOEA/DD, which combines ideas from the decomposi
tion of multi-objective evolutionary algorithm based on decomposition 
(MOEA/D) with the dominance and niching strategy applied in NSGA- 
III. MOEA/DD utilises the basic framework of MOEA/D. But in 
MOEA/DD, the neighborhood is defined based on fixed subregions 
around each weight vector, whereas in MOEA/D, the neighborhood is 
defined directly by the nearest Euclidean distances among all the weight 
vectors. MOEA/DD exhibits excellent performance in the Deb-Thiele- 
Laumanns-Zitzler (DTLZ) test problem [50]. It also can handle multi- 
objective optimisation problems with various constraints well. For 

more detailed information about MOEA/DD, please refer to reference 
[49]. 

4.1.3 Reference vector guided evolutionary algorithm 
In order to solve multi-objective optimisation problems, Cheng et al. 

[51] presented a reference vector guided evolutionary algorithm 
(RVEA). RVEA also employs a set of reference vectors to decompose the 
codomains into many small subspaces. Within each subspace, RVEA 
inherits an elitism mechanism similar to NSGA-II. The decomposition 
strategy plays an important role in the performance of hybrid GAs. Ac
cording to the vector between the reference vector and the candidate 
solution, the angle penalized distance (APD) is designed to decompose 
the multi-objective optimisation problems. RVEA calculates fitness 
values of the candidate solutions by means of APD function. Experi
mental results show that it exhibits excellent performance in most test 
sets [50]. A detailed introduction of RVEA is referred to Cheng et al. 
[51]. 

4.2. Benchmarking for Genetic Algorithms 

Section 3 shows that the RSM model and the SVR model have the best 
prediction accuracy among the four benchmarked SMs for the peak 
folding moment, the peak torsional moment and the torsional failure 
angle of DCHs. It is worth noting that the RSM model has another 
advantage over other SMs. It is easy to apply and presents an explicit 
equation of the relationship between design variables and objectives 
that can be easily tuned under the required conditions. Therefore, based 
on the RSM model and the analytical formula of mass (i.e. Eqs. (2) and 
(B-1)-(B-3)), the four popular multi-objective GAs mentioned in Section 
4.1 were benchmarked to obtain the optimal designs of DCHs. 

In order to obtain the maximum peak torsional moment, the mini
mum peak folding moment and the minimum mass of DCHs, the in
fluences of population size were studied among the four GAs. According 
to the review paper from Wang and Sobey [27], the most commonly 
utilised number of population size is 50 and the most commonly utilised 
generation numbers are jointly 50 and 100. In order to determine the 
best population size for each GA, population sizes of 200, 600, 1000, 
1500, 2000 and 3000 were compared for the four benchmarked GAs. 
The runs generating the best Pareto front from 30 simulations are shown 

Fig. 13. Comparison of mIGD values for NSGA-III, MOEA/DD and RVEA.  
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in Fig. 12 for the highest and lowest population sizes for each of the four 
GAs. 

The optimisation results of NSGA-III, MOEA/DD and RVEA are 
similar, all of which are greatly affected by the population size. When 
the population size is 200, only a few points are on the Pareto front and 
the design points on the Pareto front is increased with the increase of the 
population size. When the population size is 3000, NSGA-III, MOEA/DD 
and RVEA all find similar Pareto fronts. The design points of these GAs 
are all well distributed, but the density of design points on Pareto front 
of NSGA-III is larger than that of MOEA/DD and RVEA. SPEA-II is ex
pected to show good performance as a general optimiser, but it has poor 
performance, as shown in Fig. 12. There is even no design point with the 
peak torsional moment greater than 35000 N⋅mm on the Pareto front. 
SPEA-II is not discussed further due to its poor performance. In the 
optimisation of tubular DCHs, it is considered that SPEA-II exhibits the 
worst performance among the four benchmarked GAs. 

4.3. Performance metrics 

Convergence, distribution diversity and distribution range are three 

key indicators to quantitatively evaluate the performance of a multi- 
objective optimiser. Different metrics can be utilised to evaluate the 
performance of GAs. Commonly used methods of quantitatively evalu
ating optimisers include: hyper volume (HV) [52], maximum spread 
(MS) [53], generational distance (GD) [54], inverter generational dis
tance (IGD) [55] and mimicked inverted generational distance (mIGD) 
[27]. In this study, mIGD was selected as the performance metrics to 
evaluate the convergence, accuracy and diversity of the Pareto front, 
and then the best performing optimiser among the four benchmarked 
GAs was determined. All the Pareto front solutions from all independent 
run cycles of all the four Gas were combined. Non-domination and 
duplication checks were implemented on this augmented Pareto front 
set to filter it and create a ‘real Pareto front’. The mIGD values of the 
obtained Pareto fronts from each GA to this mimicked ‘real Pareto front’ 
were calculated to evaluate the performance of each benchmarked GA. 
The mIGD is determined by using Eq. (15) as [27], 

mIGD(O,M∗) =

∑
ν∈Md(ν,O)

|M∗|
, (15)  

where M∗ represents a set of points along the mimicked Pareto front, O 

Table 6 
League table of the four state-of-the-art Genetic Algorithms.  

Genetic Algorithms Citation frequency Convergence Influence of hyperparameters Computational efficiency Rank 

NSGA-III 2010 Non-convergence Significant High 1 
MOEA/DD 336 100 Generations Significant Medium 2 
RVEA 168 200 Generations Significant High 3 
SPEA-II 7880 – Significant Low 4  

Fig. 14. Optimal designs of tubular DCHs.  

Table 7 
An optimal design case of a tubular DCH.  

Optimal design 

Items M1 (N⋅mm) M2 (N⋅mm) α(deg)    

FEA value 81,858 29,885 10.56    
RSM model 82,195 29,743 10.64    
Relative deviation 0.41% − 0.48% 0.76%    
Comparison before and after optimisation based on an optimal design       
Items D (mm) w (mm) l (mm) M1 (N⋅mm) M2 (N⋅mm) m (g) 
Before optimisation 63 40 180 82,195 29,743 57.4 
After optimisation 58.78 30.00 175.00 71,957 32,235 56.8 
Relative deviation – – – − 12.46% 8.38% − 1.05%  
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represents a set of points from the currently obtained Pareto front, ν is 
one of the points in the set M∗ and d(ν,O) calculates the minimum 
Euclidean distance between v and the points in O. The lower mIGD value 
reflects the better convergence, accuracy and diversity of the Pareto 
front. 

The mIGD values of the optimisation results obtained by the three 
better performance optimisers (i.e. NSGA-II, MOEA/DD and RVEA) were 
recorded from 50 generations to 300 generations with five 50-genera
tion intervals, as shown in Fig. 13. Since all mIGD values of RVEA, 
including the mean mIGD value among the 30 runs and the mIGD values 
from the best and worst cases, are higher than those of NSAG-III and 
MOEA/DD in any generation, illustrating that RVEA has the worst 
performance of the three GAs. Although all cases from MOEA/DD are 
better than the worst cases from NSGA-III before 200 generations, the 
mean mIGD values and the mIGD values from the worst cases of NSGA- 
III are lower than all mIGD values of MOEA/DD, indicating that the 
Pareto front of NSGA-III has higher accuracy and diversity. It is clear 
that NSGA-III has the best performance among the three optimisers. 
MOEA/DD and RVEA converge at 100 and 200 generations, respec
tively. NSGA-III has not achieved converged solutions after 300 gener
ations, and the mIGD values gradually decrease with the increased 
generation number. Therefore, it can be concluded that NSGA-III is ex
pected to perform better when generation is greater than 300. For the 
optimisation results of MOEA/DD, the difference between the mIGD 
values of the worst cases and those of the best cases is small, indicating 
that the Pareto front of MOEA/DD has little difference among the 30 
simulations. 

In summary, the league table of the four state-of-the-art GAs is shown 
in Table 6. The four benchmarked GAs are ranked as follows: NSGA-III 
> MOEA/DD > RVEA > SPEA-II. 

5. Design solutions for tubular deployable composite hinges 

NSGA-III achieved the best performance among the four optimisers, 
so the results of NSGA-III with 1500 population size and 200 generations 
were selected to obtain the optimal designs of DCHs. Due to the 
repeatability of the results across the four GAs and their 30 independent 
cycles, it is assumed that each point on the Pareto front is close to the 
optimal designs of DCHs. There are a total of 1500 design points on the 
entire Pareto front, and the 1500 design points are sorted in ascending 
order of mass. Appendix C summarises 16 design points to exhibit how 
changes in the domain affect the codomains, in which the 16 designs 
were picked from the first point of each 100 points interval. These 16 
design points demonstrate that the relationship between design vari
ables and objectives is nonlinear, which makes design decisions more 
difficult. 

The data satisfying constraints before optimisation is compared with 
the Pareto front after optimisation, as shown in Fig. 14. It is obvious 
from Fig. 14 that the data before optimisation is distributed on the lower 
left side of the Pareto front, which indicates the effectiveness of the 
optimisation designs. In order to further discuss the optimisation de
signs, Point A was selected from the data before optimisation and Point B 
was chosen from the Pareto front by hand. The comparison results of 
Point A and Point B are shown in Fig. 14 and Table 7. According to 
Fig. 14 and Table 7, for the DCH (D = 63 mm, w = 40 mm and l = 180 
mm), the relative deviations between predicted values of peak folding 
moment, peak torsional moment and torsional failure angle and FEA 
values are 0.41%, − 0.48% and 0.76% respectively, which further sug
gests that the RSM model can provide high prediction accuracy. 
Compared with Point A (M1 = 82195 N⋅mm, M2 = 29743 N⋅mm and m 
= 57.4 g), Point B (M1 = 71957 N⋅mm, M2 = 32235 N⋅mm and m = 56.8 

g) is a better design solution. The peak folding moment is reduced by 
12.46%, the peak torsional moment is increased by 8.38% and the mass 
decreased by 1.05%. The results show that a total of 45 design points are 
found on the Pareto front, all of which are better than Point A for the 
three objectives (i.e. the minimum peak folding moment, the maximum 
peak torsional moment and the minimum mass). These 45 design points 
are listed in Appendix D. Therefore, the coupling RSM-NSGAIII tech
nology is considered to be an effective method to optimise DCHs. 

6. Conclusions 

Due to lightweight and excellent mechanical properties, DCHs are 
increasingly used in aerospace field, so it is important to optimise them. 
In this paper, the coupling SM and GA technology was utilised to obtain 
the optimal designs of DCHs. The RSM model and three machine 
learning models were benchmarked, and the SM with the highest pre
diction accuracy was determined through statistical error functions. In 
addition, four leading GAs were benchmarked, and the best performing 
optimiser was determined by applying a performance metric. Three 
important results emerging from the research are as follows: 

The RSM model and three popular machine learning models (i.e. 
ANN, SVR and RF) were employed as SMs for the peak folding moment, 
the peak torsional moment and the torsional failure angle of DCHs. The 
four SMs are sorted according to prediction accuracy by RMSE, MAE and 
R2: RSM = SVR > ANN > RF. 

The four state-of-the-art multi-objective GAs, namely NSGA-III, 
MOEA/DD, RVEA and SPEA-II, were benchmarked, and a quantitative 
analysis metric (mIGD) was applied to determine the best performing 
optimiser (i.e. NSGA-III). The ranking of the four leading multi-objective 
GAs is: NSGA-III > MOEA/DD > RVEA > SPEA-II. 

Coupling RSM-NSGAIII technology is an effective approach to obtain 
the optimal designs of DCHs. Compared with Point A, Point B is a better 
design scheme. The peak folding moment is reduced by 12.46%, the 
peak torsional moment is increased by 8.38% and the mass decreased by 
1.05%. A total of 45 design points are found on the Pareto front, all of 
which are better than Point A, which helps the designers to efficiently 
determine their required designs. 
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M1(D, w, l) = − 7.11 × 106 + 3.95 × 105D − 36322.2w − 1324.28l + 1284.48Dw − 386.24Dl
+ 78.42wl − 6541.96D2 − 222.76w2 + 55.5l2 − 0.88Dwl − 6.59D2w + 6.38D2l

− 2.27Dw2 − 0.87Dl2 − 0.58w2l − 7.569 × 10− 3wl2 + 31.92D3 + 2.77w3 + 6.16 × 10− 3l3
(B-1)   

M2(D, w, l) = − 3.15 × 106 + 1.50 × 105D + 6305.35w + 1462.54l + 169.58Dw + 132.09Dl
− 79.96wl − 2806.71D2 − 78.07w2 − 17.61l2 + 1.18Dwl − 11.16D2w − 1.4D2l
+ 11.09Dw2 − 0.072Dl2 − 0.29w2l + 0.091wl2 + 20.1D3 − 4.35w3 + 0.031l3

(B-2)   

α(D, w, l) = − 1038.39 + 45.04D + 8.81w + 0.89l + 0.098Dw + 0.091Dl − 0.069wl
− 0.97D2 − 0.1w2 − 9.77 × 10− 3l2 + 7.55 × 10− 4Dwl − 7.79 × 10− 3D2w
− 8.66 × 10− 4D2l + 8.03 × 10− 3Dw2 − 7.96 × 10− 5Dl2 − 7.66 × 10− 5w2l
+ 8.61 × 10− 5wl2 + 8.42 × 10− 3D3 − 2.95 × 10− 3w3 + 1.88 × 10− 5l3

(B-3)   

Table A1 
Specifications and properties of DCHs [15].  

Parameter (unit) Value 

Total length L (mm) 500 
Number of the ply 10 
Ply angle (deg) [0/0/45◦/− 45◦/0]s 
Thickness of each ply (mm) 0.04 
Longitudinal modulus E1 (GPa) 126 
Transverse modulus E2 (GPa) 8 
Poisson’s ratio ν12 0.33 
In-plane shear modulus G12 (GPa) 3.7 
Density of composite, ρ (kg/m3) 1780 
Longitudinal tensile strength X1t (MPa) 1050 
Transverse tensile strength Y1t (MPa) 40 
Longitudinal compressive strength X2c (MPa) 703 
Transverse compressive strength Y2c (MPa) 120 
In-plane shear strength S12 (MPa) 70  

Table A2 
FEA results for the selected 79 design points [15].  

Design No. D (mm) w (mm) l (mm) M1 (N⋅mm) M2 (N⋅mm) α (deg) 

1 65 30 150 68,081 62,023  21.78 
2 65 30 160 76,178 61,840  22.02 
3 65 30 170 87,935 61,121  22.21 
4 65 30 180 99,272 58,887  21.5 
5 65 30 190 108,146 54,684  18.82 
6 65 30 200 115,272 50,230  15.85 
7 65 30 210 120,098 47,927  14.37 
8 55 30 150 62,316 20,707  7.67 
9 55 30 160 62,510 21,698  8.84 
10 55 30 170 62,899 23,593  10.54 
11 55 30 180 63,644 24,828  11.86 
12 55 30 190 66,170 24,994  12.45 
13 55 30 200 72,907 24,994  12.73 
14 55 30 210 85,410 24,994  13.08 
15 65 50 150 59,822 29,697  12.77 
16 65 50 160 59,983 28,865  12.77 
17 65 50 170 60,955 27,890  12.72 
18 65 50 180 63,287 27,131  12.66 
19 65 50 190 70,219 26,063  12.49 

(continued on next page) 

T.-W. Liu et al.                                                                                                                                                                                                                                  



Composite Structures 280 (2022) 114757

15

Table A2 (continued ) 

Design No. D (mm) w (mm) l (mm) M1 (N⋅mm) M2 (N⋅mm) α (deg) 

20 65 50 200 70,218 24,994  12.28 
21 65 50 210 70,413 24,182  12.26 
22 55 50 150 11,270 9400  14.75 
23 55 50 160 10,687 9400  15.22 
24 55 50 170 7804 9400  15.93 
25 55 50 180 5505 9151  16.37 
26 55 50 190 4533 8748  16.49 
27 55 50 200 4533 8499  17.20 
28 55 50 210 8387 8332  18.28 
29 60 40 150 60,955 26,479  11.32 
30 60 40 160 60,955 25,823  11.46 
31 60 40 170 60,955 26,645  12.30 
32 60 40 180 63,287 26,645  12.63 
33 60 40 190 70,218 25,563  12.45 
34 60 40 200 70,218 25,161  12.68 
35 60 40 210 70,218 25,813  13.50 
36 55 34 150 54,501 20,524  10.50 
37 55 38 150 46,203 20,882  14.00 
38 55 42 150 44,002 19,411  15.99 
39 55 46 150 36,994 14,832  15.61 
40 65 34 150 89,893 46,985  14.35 
41 65 38 150 93,769 36,130  10.18 
42 65 42 150 83,444 32,991  10.10 
43 65 46 150 70,172 31,964  11.49 
44 65 34 210 123,258 35,650  8.31 
45 65 38 210 124,746 33,148  9.10 
46 65 42 210 109,242 31,964  11.09 
47 65 46 210 84,002 29,340  12.31 
48 55 34 210 84,560 22,550  14.66 
49 55 38 210 84,932 19,839  15.99 
50 55 42 210 64,021 16,444  16.83 
51 55 46 210 39,196 13,049  18.22 
52 60 30 180 88,777 31,536  9.62 
53 60 34 180 79,410 28,569  9.73 
54 60 38 180 65,552 27,728  11.97 
55 60 42 180 64,281 24,504  12.81 
56 60 46 180 55,599 20,799  13.36 
57 60 50 180 44,715 17,543  14.41 
58 57 30 150 68,532 25,821  8.34 
59 59 30 150 80,636 31,414  9.12 
60 61 30 150 76,301 36,624  11.01 
61 63 30 150 63,004 44,862  13.90 
62 57 30 210 83,750 27,144  11.55 
63 59 30 210 93,788 29,980  10.61 
64 61 30 210 100,189 34,633  11.20 
65 63 30 210 106,241 41,070  13.07 
66 57 50 210 21,485 11,226  16.82 
67 59 50 210 41,357 14,052  15.56 
68 61 50 210 51,452 16,915  14.31 
69 63 50 210 62,131 19,002  12.28 
70 57 50 150 27,362 13,123  14.17 
71 59 50 150 34,910 16,723  13.61 
72 61 50 150 40,513 19,846  12.77 
73 63 50 150 52,093 23,830  12.42 
74 55 40 180 48,631 19,368  16.15 
75 57 40 180 53,315 21,647  14.19 
76 59 40 180 61,812 24,961  13.19 
77 61 40 180 68,592 27,048  11.55 
78 63 40 180 81,858 29,885  10.56 
79 65 40 180 93,152 33,082  9.50  
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Appendix C. .  

Appendix D. .  

Design No. D (mm) w (mm) l (mm) M1 (N⋅mm) M2 (N⋅mm) m (g) 

1  55.00  50.00  210.00 13,807 6865  39.2 
2  55.00  48.03  208.03 23,606 11,640  41.1 
3  55.00  47.37  199.48 22,042 13,114  42.3 
4  55.00  48.99  171.25 9153 11,436  43.5 
5  55.24  44.60  193.34 34,042 17,803  44.9 
6  56.04  42.83  201.39 50,014 20,320  46.4 
7  56.27  39.29  209.78 70,639 22,216  48.0 
8  56.76  40.23  178.77 54,004 22,572  50.1 
9  61.66  48.78  168.75 48,044 22,237  52.4 
10  58.10  30.00  199.87 83,062 29,482  54.9 
11  59.07  30.00  172.98 71,889 32,972  57.3 
12  61.19  30.00  181.81 80,293 38,632  59.3 
13  62.39  30.00  177.97 82,119 43,580  60.8 
14  63.90  30.00  185.56 93,561 49,480  62.2 
15  63.68  30.00  150.75 71,867 51,705  63.5 
16  65.00  30.60  150.00 75,258 58,463  64.8   

Design No. D (mm) w (mm) l (mm) M1 (N⋅mm) M2 (N⋅mm) m (g) 

1  57.84  30.00  183.95 73,381 29,951  55.4 
2  58.39  30.00  193.13 79,309 30,522  55.6 
3  58.06  30.00  183.74 73,758 30,406  55.6 
4  58.06  30.13  184.20 74,030 30,190  55.6 
5  57.76  30.00  174.76 69,869 29,897  55.7 
6  58.68  30.00  194.90 81,003 30,923  55.8 
7  58.38  30.00  187.25 76,074 30,882  55.8 
8  58.25  30.00  181.63 73,268 30,880  55.9 
9  58.39  30.00  183.34 74,284 31,112  56.0 
10  58.86  30.00  192.84 80,182 31,469  56.1 
11  58.50  30.00  183.88 74,740 31,308  56.1 
12  58.16  30.07  175.53 70,959 30,687  56.1 
13  58.16  30.07  174.44 70,634 30,686  56.1 
14  58.01  30.00  172.69 69,820 30,438  56.1 
15  58.66  30.00  187.01 76,568 31,482  56.2 
16  59.12  30.00  194.82 81,955 31,804  56.3 
17  59.12  30.00  194.82 81,955 31,803  56.3 
18  59.05  30.00  194.82 81,808 31,675  56.3 
19  58.37  30.18  175.10 71,315 30,984  56.3 
20  58.78  30.00  185.29 75,999 31,846  56.4 
21  58.81  30.00  182.38 74,754 32,069  56.5 
22  58.71  30.00  179.71 73,459 31,950  56.5 
23  58.23  30.01  168.91 69,369 30,830  56.5 
24  58.83  30.00  180.38 73,963 32,196  56.6 
25  58.83  30.00  180.38 73,966 32,196  56.6 
26  58.66  30.20  176.06 72,212 31,613  56.6 
27  58.65  30.00  174.37 71,516 31,936  56.7 
28  59.27  30.07  186.73 77,855 32,727  56.8 
29  58.78  30.00  175.00 71,957 32,235  56.8 
30  59.28  30.44  183.62 76,660 32,342  56.9 
31  58.67  30.20  168.73 70,254 31,585  56.9 
32  59.61  30.00  192.42 81,713 33,116  57.0 
33  59.61  30.00  193.18 82,163 33,037  57.0 
34  59.61  30.00  193.18 82,163 33,037  57.0 
35  59.61  30.00  193.18 82,163 33,037  57.0 
36  59.61  30.00  193.18 82,165 33,032  57.0 
37  58.88  30.00  174.27 71,915 32,478  57.0 
38  59.40  30.10  183.15 76,483 33,252  57.1 
39  59.01  30.00  172.99 71,784 32,828  57.2 
40  58.61  30.00  161.90 68,848 31,393  57.2 
41  59.65  30.00  186.50 78,587 33,776  57.3 
42  59.07  30.00  172.99 71,889 32,972  57.3 
43  58.81  30.00  166.34 69,823 32,189  57.3 
44  58.64  30.00  160.35 68,730 31,346  57.3 
45  58.64  30.00  160.35 68,730 31,346  57.3   
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