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Abstract The operation of free-floating space robots
causes significant challenges to the attitude control of
a spacecraft body, resulting from the strong dynamic
coupling existing in the system as well as the append-
ing unknown property from a captured object. Conven-
tional reactionless motion planning and control meth-
ods require the precise knowledge of system dynam-
ics with ideal path tracking performance, which are
impossible to achieve in reality. To solve this prob-
lem, an adaptive reactionless path planning and con-
trol integrated strategy is proposed for free-floating
space robots while manipulating unknown objects. For
details, a SW-RLS (Slide-windowed Recursive Least
Square) algorithm is employed to construct the adap-
tive reactionless path planning by identifying and com-
pensating the unknown property in the form of a time-
variable matrix for the momentum equation of the sys-
tem. Simultaneously, a robust adaptive control strat-
egy via the PSO-ELM (Particle Swarm Optimization-
Extreme Learning Machine) algorithm is proposed to
track the dynamic change in the planned path, based on
the foundation of a designed PD controller for reducing
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the error. With computational efficiency, an adaptive
controller via PSO-ELM aims at learning and com-
pensating for the unknown property intelligently; then,
a robust controller is used to reject the model uncer-
tainties. The notable feature of the proposed strategy
is that it requires neither an accurate system model
nor any information about the unknown property. Most
importantly, the design can dynamically realize reac-
tionless path tracking performance. Finally, the sim-
ulations of a free-floating space robot capturing an
unknown object and comparisons with existing meth-
ods are presented to demonstrate the effectiveness of
the proposed scheme.

Keywords Space robot · Adaptive reactionless
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Nomenclature

M Dynamic inertial matrix
C Matrix that incorporates centrifugal

force and Coriolis force
d Interior disturbance vector
τ Generalized force vector
q Generalized variable
D Composite disturbance vector
ai Position vector from joint i to centroid

of link i
bi Position vector from center of link i

to joint (i +1)
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bB Position vector from center of space-
craft body to joint 1

ri Position vector of link i with respect
to inertial frame

rg Position vector of the whole system
with respect to inertial frame

m Total mass of robotic system
mi Mass of link i
Ii Inertial tensor of z axis of joint i
n Amount of joints
r System error of control
e Position tracking error
Λ Diagonal matrix with positive diago-

nal elements
P Linear momentum of the whole sys-

tem
L Angular momentum of the whole sys-

tem
v0 Linear velocity of spacecraft body
ω0 Angular velocity of spacecraft body
α Attitude angle of spacecraft body
θi Angle of joint i
I Identity matrix
ε1 Priori residual error
ε2 Posteriori residual error
PN Inverse of autocorrelation matrix
xi Input vector of i th ELM network
Ai Input weight matrix of i th ELM net-

work
bi Hidden bias of i th ELM network
gi Activation function of i th ELM net-

work
β i Output weight matrix of i th ELMnet-

work
l Amount of hidden layer nodes of

ELM network
γ Step-length regulatory factor of ELM

network
m Amount of optimized particles
S Set of optimized particles
pi Best partial position for particle i
gi Best global position for particle i
K Positive definite matrix

1 Introduction

The utilization of space robots [1] is of paramount
importance with the increase in space operations

including assembly, capturing and construction. Var-
ious special tasks (e.g., removal of space debris) can
pose a threat to the robotic systems because of the
unknown properties of captured objects. In fact, captur-
ing operations by a space robot installed on the space-
craft body need to be limited when the entire system
works in a free-floating state [2].A strong dynamic cou-
pling relationship exists between the spacecraft body
and the robotic arm, and the motion of the space robot
will lead to instability of the spacecraft body attitude.
The ACS (Attitude Control System) of the spacecraft
can be employed to ensure the stability of the entire
system but with large fuel consumption. The proper
path planning of the robotic arm can counteract this
effect on the motion of the space robot on spacecraft
attitude. No energy problem exists because the sustain-
able electric energy produced by a solar array can be
employed [3]. However, the uncertain properties from
the captured unknown object such as space debris can
cause the conventional no-disturbance planning meth-
ods to be invalid; therefore, precise dynamic knowledge
of the entire system is required by the RNS (Reaction
Null Space) algorithm or similar [4–7]. An “identifica-
tion” process during the post-capture stage was intro-
duced [8–11] bymeasuring the property of the captured
object and compensating for the path planning and
control system. Similar schemes should acquire accu-
rate information of the captured object and bring about
high sensor requirements and a delay control issue. To
solve this problem, the ARNS (Adaptive Reaction Null
Space) method with dynamic changing planning paths
for robotic arms [3] during capturing of an unknown
object was proposed and introduced to realize themini-
mumdisturbance to the spacecraft body attitude. In this
method, the unknown part of the system (the captured
object) can be obtained online via the RLS (Recur-
sive Least Square) algorithm and compensation can be
made in the form of a time-variable matrix for the path
planning equation of the robotic arm. Thus, the delay
control issue is solved. The conventional RLS algo-
rithm employed in ARNS exhibits saturation charac-
teristics [12] with the growth of the gain matrix caused
by the increased computation, and the online identifi-
cation for the time-variable term that incorporates the
unknown property to construct the planned path will
expire, thereby degrading the performance of the path
via ARNS. RLS via the forgetting factor [13] could
make the ARNS improve its adaptability with lim-
ited ability. Furthermore, the SW-RLS algorithm [14]
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Adaptive reactionless control strategy via the PSO-ELM algorithm for free-floating space 1323

focuses more on the rapidly changed parameters of
time-varying systems, and there is no saturation char-
acteristic based on retaining the limited data length by
eliminating the older history data.

To realize the reactionless motion for a space robot
while capturing an unknown object, an effective reac-
tionless path planning with dynamical changing fea-
tures is essential. Simultaneously, an efficient control
strategy to track the planned path of the space robot
is well worth considering because the scheme to real-
ize reactionless motion such as ARNS usually involves
ideal path tracking performance, which neglects the
effect of the tracking error from the controller and is
impossible in reality. To degrade the effects of tracking
errors, the control strategy for the controller requires
faster tracking speed and less tracking errors to ensure
better attitude stability performance for the entire sys-
tem. Considering the complicated disturbance existing
in the control system, such as the abrupt and uncertain
changes in system dynamics by capturing an unknown
object as well as the original modeling uncertainty of
the system, the control strategy to track the adaptive
path of a robotic arm needs to be robust and adap-
tive. Therefore, a single robust controller [15–17] or
an adaptive controller [18–20] can hardly ensure the
control performance in capturing the unknown object
with abrupt uncertain properties. A compromise is
developed with the robust adaptive control strategy
[21–24] to adopt the advantages from both the con-
trol strategy, by which the unknown disturbance is
learned and compensated via the adaptive strategy, and
to reject the model uncertainties via the robust strat-
egy. However, different from the conventional strat-
egy of using the adaptive control to learn the unknown
parts of the dynamic system, the space-capturing task
attached with the abrupt change in dynamics needs a
faster learning and compensatingmethod for the abrupt
unknownproperties. Traditional adaptive controlmeth-
ods such as a BP (Back Propagation) network [25],
RBF (Radial Basis Function) network [25] and fuzzy
algorithm [21,22] exhibit complicated computing pro-
cesses and are insufficient to deal with the abrupt prop-
erties or ensure adaptive speed. Recently, the ELM [26]
algorithm was developed for its extremely fast sys-
tem uncertainty learning and cognizing performance
[27,28]. However, the random input feature settings
(input weight, hidden layer bias) of conventional ELM
networks could weaken the network performance to

some extent because the pre-setting input feature owns
the possibility of staying away from its optimal value.

Given the problem, some ameliorated methods by
optimizing the input feature of the ELM algorithm
have been proposed. Zhu et al. [29] used various types
of evolutionary algorithms to determine network input
features, which achieved better generalization perfor-
mance with more compact networks. Particle Swarm
Optimization (PSO)was combinedwith the ELMalgo-
rithm in [30] to improve the generalization capac-
ity of the SLFNs (Single-hidden Layer Feed-forward
Networks). Xu et al. [31] proposed an evolutionary
ELM based on PSO, which can address certain pre-
diction problems more suitably. Han et al. presented
an improved ELM algorithm with improved PSO via
adaptive inertia in [32] to choose the input feature of
the SLFN. In addition, a performance investigation
through the PSO-ELM algorithm with various alter-
native topologies is presented in [33]. The research
above with the optimization of the input features of
ELM via the PSO algorithm exhibits strong advan-
tages including online parameter adjustment, avoiding
optimal input feature value and enhancing the ELM
performance. Therefore, in order to satisfy the require-
ments of faster adaptive performance and higher track-
ing accuracy for space robots to track the reactionless
path, considering the abrupt unknown properties of the
manipulating task, a dynamical identification and con-
trol strategy without saturation characteristics is devel-
oped. This strategy addresses the time-variable matrix
for constructing the reactionless path and is necessary
to achieve an improved ELM algorithm.

In this paper, an adaptive reactionless path plan-
ning and control integrated strategy is proposed for a
free-floating space robot while capturing an unknown
object, and the work is presented as follows:

(1) An adaptive reactionless path planning method is
proposed for a space robot, which employs the
SW-RLS algorithm to identify and compensate for
the unknown properties existing in the system and
simultaneously avoids the saturation phenomenon
when dealing with time-variable elements during
planning.

(2) A robust adaptive control strategy is proposed
for space robots to track the planned reaction-
less path, which employs the PSO-ELM algo-
rithm to dynamically learn and compensate for
the unknown properties in the form of constructed
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adaptive control. Herein, the ELM algorithm is
used to address the abrupt properties according
to its extremely fast learning performance, and
the PSO algorithm is used to optimize the input
feature of ELM to avoid the optimal value and
also to enhance ELM performance. In addition,
the designed PD controller is employed to reduce
errors associated with computational efficiency,
and the robust controller is applied to reject the
model uncertainties.

(3) To verify the validity of the proposed strategy, sim-
ulations of a free-floating space robot with a 4-
DOF (Degree of Freedom) robotic arm capturing
an unknown object and comparisons with other
existing methods are implemented and presented.

This paper is organized as follows. Part II presents
the basic dynamic relationship for a free-floating space
robot in the post-capture stage, and a dynamic decou-
pling derivation for the robotic arm is described to con-
struct the basis of the joint controller design. Part III
illustrates the form of the ARNS algorithm via SW-
RLSalgorithm to plan the adaptive reactionless path for
the robotic arm, and the details of the proposed robust
adaptive control strategy via PSO-ELM are discussed
to track the planned path. In Part IV, the simulation is
conducted by comparing the performance of the pro-
posed strategy with other conventional strategies. Part
V presents the conclusion.

2 Basic dynamics of a free-floating space robot

Figure 1 shows a schematic diagram and the vital
parameters of a space robot composed of a rigid serial-
link robotic arm and the spacecraft. The vectors rb,
ri and rg denote the centroid position of the space-
craft, link i and the entire robotic system, respectively,
expressed in inertial frame. Considering that the sys-
tem works in a free-floating state without any exter-
nal forces or torque, i.e., without the employment of
momentum exchange devices, the only disturbances of
the robotic systemare derived from interior factors such
as joint friction, measurement noises and model uncer-
tainty. Thus, the robotic system is subject to the law of
linear and angular momentum conservation in the post-
capture stage. The detailed kinematics and dynamics of
a space robot can be found in [2], bywhich the dynamic
equation can be rewritten as follows.

1joint

br

1r 2r
npgr

I∑

2joint
3joint

njointBb
1a 1b 2a

2b
systemofcentroid

frameinertial

Fig. 1 Space robot in the post-capture stage

From [2], the basic dynamic equation of the system
before capturing can be expressed by Eq. (1).

M(q)q̈ + C(q, q̇)q̇ + d = τ (1)

Equation (1) illustrates the precise dynamic knowl-
edge of thewhole system in the pre-capture stage, with-
out the property of captured object, and the dynamic
parameters are regarded as prior data. The matrixM(q)
in Eq. (1) denotes the dynamic inertial matrix of the
system, and C(q, q̇) contains the centrifugal force and
Coriolis force of the system; d denotes the interior dis-
turbance term, and τ is the generalized force composed
of the actuating torque of the motors installed on each
joint; q denotes the generalized variable term, which is
composed of the angular displacement of each joint.

Given the capturing operation involving an unknown
objectwith appendingdynamicparameters, the dynamic
parameters of the entire system might be changed, and
the dynamic equation of the entire system in the post-
capture stage will be rewritten again as Eq. (2). In
this equation, M̂(q) and Ĉ(q, q̇) contain the uncertain
properties from the captured object, so the uncertain
dynamic parameter can be defined by Eq. (3),

M̂(q)q̈ + Ĉ(q, q̇)q̇ + d = τ

M̃(q) = M̂(q) − M(q) (2)

C̃(q, q̇) = Ĉ(q, q̇) − C(q,q̇) (3)

where M̃(q) and C̃(q, q̇) result from the captured
object.

To simplify the form of the existing uncertainties in
the system, the composite disturbanceD is definedwith

123



Adaptive reactionless control strategy via the PSO-ELM algorithm for free-floating space 1325

Eq. (4) that includes the unknown properties as well as
the interior disturbance d.

τ = M̂(q)q̈ + Ĉ(q, q̇)q̇ + d

= M(q)q̈ + C(q, q̇)q̇ + d + M̃(q)q̈ + C̃(q, q̇)q̇

= M(q)q̈ + C(q, q̇)q̇ + D

D = d + M̃(q)q̈ + C̃(q, q̇)q̇ (4)

M(q) = diag {M11 . . . Mii . . . Mnn} in Eq.(4) is a con-
stant diagonal matrix with n×n elements, i.e., Mii is a
constant-valued nominal term of the i th subsystem via
axis inertia. Therefore, Eq. (4) can be rewritten by Eq.
(5).

q̈ = −M(q)−1(C(q, q̇)q̇ + D) + M(q)−1τ (5)

Now, combining the term−M(q)−1(C(q, q̇)q̇+D) into
a newly defined uncertain termD′, the dynamic Eq. (5)
can be transformed into Eq. (6),

q̈ = D’ + M(q)−1τ (6)

where D’ = (D′(1) D′(2) . . . D′(n)).
Noting thatM(q) is invertible with a diagonal form,

it is straightforward to verify that Eq. (6) can be decou-
pled through the proper transformation. The decoupled
form is illustrated by Eq. (7), with an uncertain D′(i)
for the i th subsystem.

q̈i = D′(i) + M−1
i i τi (7)

Then, the system error of control r for the robotic sys-
tem is redefined and expressed as Eq. (8),

r = ė + Λe

ė = q̇ − q̇d
e = q − qd (8)

where q and qd denote the actual and desired general-
ized variable terms, respectively, and q̇ and q̇d denote
the derivation of them, respectively. e represents the
position tracking error, and Λ represents the diagonal
matrix with positive diagonal elements. Therefore, the
reference output q̇r can be defined and expressed via
Eq. (9a) and fulfill the relationship via Eq. (9b) based
on Eqs. (4) and (8).

q̇r = q̇d + Λe (9a)

Mq̈r + Cq̇r + D − τ = M(q̈d + Λė)

+C(q̇d + Λe) + D − (Mq̈ + Cq̇ + D)

= M(q̈d + Λė − q̈) + C(q̇d + Λe − q̇)

= M(ë + Λė) + C(ė + Λe)

= Mṙ + Cr (9b)

3 Adaptive reactionless control strategy

To realize the reactionless motion of the robotic arm,
the integrated adaptive reactionless control strategy
involves adaptive path planning and the correspond-
ing control strategy. The adaptive path planning would
be adaptively updated by the SW-RLS because of
the existing time-variable elements in the coefficient
matrix of the ARNS algorithm. In addition, the robust
adaptive control strategy via PSO-ELM algorithm is
proposed to fast track the planned adaptive path of
the robotic arm to ensure enough robustness and the
adaptive nature of the system control performance. The
schematic of the proposed adaptive reactionless control
strategy is illustrated in Fig. 2.

3.1 Adaptive reactionless path planning via SW-RLS

The space robot is subject to the law of linear/angular
momentum conservation when the system operates in

Fig. 2 Adaptive
reactionless control strategy
for space robotic

Reactionless   Path   Joint
Controller Design

Space
Robotic Arm

Time-variable Element 
Update

algorithmRLS-SW

StrategyControlAdaptiveRobust 

PlanningPath ssReactionleAdaptive
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the post-capture stage, and thereby, the total linear and
angular momentum of the system can be reformed by
Eq. (10) according to [3], with expressed P (linear
momentum) and L (angular momentum), respectively.

[
P
L

]
=

[
mI m r̃T0g
0 Hω

] [
v0
ω0

]
+

[
JTω

Hωφ

]
q̇ +

[
0

rg × P

]

(10)

In the above, the expressions v0 and ω0 represent the
linear velocity and angular velocity of the spacecraft,
respectively, expressed in the inertial frame; q̇ repre-
sents the derivation of the generalized variable q, i.e.,
joint rate; m denotes the total mass of the robotic sys-
tem; and I is the identity matrix. The coefficient matrix
of [v0 ω0]T and q̇ is based on the inertial matrix and
coupling inertial matrix, accordingly.

Given the angular momentum of the robotic sys-
tem from Eq. (10), with initial momentum P0, L0 is
expressed as follows:

L = Hωω0 + Hωφ q̇ + rg × P0 = L0 (11)

i.e.,

Hωω0 + Hωφ q̇ = L0 − rg × P0 (12)

Based on the RNS algorithm [4–7], the desired path
planning of the robotic arm to realize reactionless
motion for the spacecraft can be obtained by Eq. (13),

q̇d|RNS = H+
ωφ(L0 − rg ×P0)+ (I−H+

ωφHωφ)ζ̇ (13)

where ζ̇ is the arbitrary vector (ζ̇ ∈ Rn) mapped into
the null space ofHωφ , and to ensure the initial velocity
of each joint is available, the ζ̇ should be defined as
a vector with nonzero elements [3–7]; H+

ωφ represents
the pseudo-inverse of Hωφ .

Then, considering the captured unknownobjectwith
unknown properties, the coefficient matrix (base iner-
tial matrix, coupling inertial matrix) incorporating the
uncertain dynamic parameter cannot be obtained pre-
cisely, which affects the desired path q̇RNS to realize the
absolutely reactionless motion. Therefore, the ARNS
algorithm is employed to realize the adjustment online
for the coefficient matrix to obtain the precise property
of the post-capture system.

Equation (12) is rewritten, illustrated by Eq. (14), in
which the signal∧represents the current estimate value
that incorporates the dynamic parameter of the captured
unknownobject. Then, Eqs. (13) and (14) are combined
and expressed by Eq. (15),

q̇ = Ĥ
+
ωφ(L0 − rg × P0) − Ĥ

+
ωφĤωω0

+
(
I − Ĥ

+
ωφĤωφ

)
ζ̇ (14)

q̇d|RNS − q̇ = (H+
ωφ − Ĥ

+
ωφ)(L0 − rg × P0)

+ Ĥ
+
ωφĤωω0 + (Ĥ

+
ωφĤωφ − H+

ωφHωφ)ζ̇

= [K1K2K3]
⎡
⎣ 1

ω0

ζ̇

⎤
⎦ (15)

where matrix K1, K2 and K3 owns the time-variable
elements, expressed as follows.

K1 =
(
H+

ωφ − Ĥ
+
ωφ

)
(L0 − rg × P0)

K2 = Ĥ
+
ωφĤω

K3 =
(
Ĥ

+
ωφĤωφ − H+

ωφHωφ

)
(16)

Based onEq. (15), the precise coefficientmatrixK1,K2

and K3 means that q̇ can ultimately converge to the
desired path q̇d|RNS to realize reactionless motion for
the robotic arm [3]. Thus, the identification algorithm
SW-RLS is used to obtain the coefficient matrix online
to deal with the time-variable parameters from K1,K2

and K3. The simplified linear regression forms of Eq.
(15) are defined with Eq. (17) as follows:

Ψ 	 = Φ (17)

where 	 denotes the coefficient matrix [K1K2K3]T ;
Ψ ,Φ denote the terms

[
1ω0 ζ̇

]Tand [q̇d|RNS − q̇]T,
respectively.

The details of the SW-RLS algorithm can be found
in [14] and are expressed below with Eq. (18). New
data are being added to the algorithm via Eq. (18a),
and the older data are removed via Eq. (18b) to avoid
the saturation phenomenon. From Eq. (18), k denotes
the kth iteration for the corresponding elements and
	̂(k) is an estimate of 	 from iteration k; u denotes
the length of the slide window; ε1 and ε2 denote the
priori and posteriori residual error, respectively; PN is
the inverse of the autocorrelation matrix with the initial
setting PN(0) = δI for δ > 1.
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Fig. 3 Proposed control
strategy for the joint
controller PD control Joint 1

PSO-ELM control

RNSdRNSdRNSd qqq |1|1|1 &&&

11 qq &

Robust control

1D′

couplingdynamic

PD control Joint i

PSO-ELM control

RNSdiRNSdiRNSdi qqq ||| &&&

ii qq &

Robust control

iD′

PD control Joint 1

PSO-ELM control

RNSdnRNSdnRNSdn qqq ||| &&&

nn qq &

Robust control

nD′

couplingdynamic

1Controller

)1joint(
pathssreactionleAdaptive

)joint(
pathssreactionleAdaptive

i

)joint(
pathssreactionleAdaptive

n

iController

nController

ε1 = Φ(k+1) − Ψ (k+1)	̂(k)

	1(k+1) = PN(k)Ψ (k+1)

I + Ψ T
(k+1)PN(k)Ψ (k+1)

(18a)

PN1(k+1) = [I − 	1(k+1)Ψ
T
(k+1)]PN(k)

	̂1(k+1) = 	̂(k) + 	1(k+1)ε1

ε2 = Φ(k−u+1) − Ψ (k−u+1)	̂1(k+1)

	(k+1) = PN1(k+1)Ψ (k−u+1)

−I + Ψ T
(k−u+1)PN1(k+1)Ψ (k−u+1)

PN(k+1) = [I − 	(k+1)Ψ
T
(k−u+1)]PN1(k+1)

	̂(k+1) = 	̂1(k+1) + 	(k+1)ε2 (18b)

According to the description in Eqs. (15–18), the reac-
tionless path with dynamical changing performance
can be obtained, as shown in Eq. (19) as follows:

q̇d|RNS = q̇ + 	̂

⎡
⎣1

ω0

ζ̇

⎤
⎦ (19)

in which q̇d|RNS = [q̇d1|RNS, q̇d2|RNS, . . . , q̇dn|RNS]T
denotes the planned angular velocity for each joint
installed on the space robot.

3.2 Robust adaptive control strategy via the
PSO-ELM algorithm

In this section, the robust adaptive control strategy
using the PSO-ELM algorithm is proposed. According
to Eq. (7), in order to compensate for the uncertain term
D′(i) for the i th subsystem and to realize the desired
tracking for each joint installed on the robotic arm, the
proposed control strategy for each joint is preferentially
involved through the decoupling Eq. (7) illustrated as
Fig. 3.

To address the uncertain term D′(i), the proposed
control torque τ̄i of joint i takes the form of (20), where
τAi denotes the adaptive controller to learn and com-
pensate for the uncertain or unknown properties exist-
ing in the system. This then employs the ELM algo-
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layerhidden
layerinput

layeroutput

diq
diq
diq
ie
ie updatePSO updateRLS

Fig. 4 ELM network diagram

rithm attached with PSO optimization to realize quick
tracking and performance enhancement. τRi denotes
the robust control strategy to reject the model uncer-
tainties, and τPDi denotes the conventional proportion
and differentiation control strategy to reduce the error
with computational efficiency.

τ̄i = Mii (τAi + τRi + τPDi ) (20)

Combining Eqs. (20) and (7) into Eq. (21) is illustrated
as follows; thus, the proper choice of τAi and τRi can
compensate for the existing uncertain term D′(i), as
described in the next section.

D′(i) = q̈i − τAi − τRi − τPDi (21)

3.3 Adaptive control term via the PSO-ELM
algorithm

The ELM algorithm is employed to construct an adap-
tive control strategy to quickly compensate for the
abrupt properties of the control system. The PSO algo-
rithm is employed to optimize the input feature of the
ELM network to address any input feature variation
from the optimal value. The schematic of the PSO-
ELM algorithm is illustrated in Fig. 4.

The input vector xi is defined in Eq. (22) for the
network as follows:

xi = [q̈di q̇di qdi ei ėi ] (22)

Therefore, the input and output for the hidden layer can
be obtained by Eqs. (23) and (24), respectively, with an
input weight matrix Ai , hidden bias bi and activation
function gi .

f i (xi ) = Aixi + bi (23)

hi = gi (f i (xi )) = gi (Aixi + bi ) (24)

The output τAi of the network can be obtained via Eq.
(25), with the output weight matrix β i .

τAi = hiβ i (25)

Therefore, the proposed adaptive law forβ i is proposed
and presented by Eq. (26) as follows:

˙̂
β i = [ ˙̂

βi1
˙̂
βi2 . . .

˙̂
βi j . . .]

˙̂
βi j = γi jhi ri ( j = 1, 2, . . . , l)

τ̂Ai = hi β̂ i (26)

where ˙̂
β i denotes the estimated growth rate of the esti-

mated weight matrix β̂ i ; l is the amount of hidden layer
nodes; γ denotes the step-length regulatory factor; τ̂Ai
represents the estimated output torque, i.e., the out-
put of the adaptive controller. Residual error still exists
between τ̂Ai and τAi , compensated by the robust con-
troller exhibited in Sect. 4. The stability analysis of
the proposed adaptive law (26) can be verified by the
constructed Lyapunov function illustrated below.

To avoid the input weight Ai and the hidden bias bi
of the ELM network varying from the optimal value,
Ai and bi elements are set as the particles requiring
optimization, and these elements are reformed into set
S, with amount m as follows:

S = (s1, s2, . . . , si , . . . , sm)T (27)

The PSO algorithm is then used to optimize the par-
ticles S, according to the principle obtaining the least
value of the fitness function F(S), which is chosen by
the control tracking error e in this paper. Thus, if the
tracking error e exhibits a downtrend, the obtained par-
ticles move toward the optimal value. Then, the update
via Eq. (28) is adopted; however, if the tracking error is
on the rise, the original particle values are maintained.

vk+1
i = wvki + c1R1(p

k
i − ski ) + c2R2(g

k
i − ski )

sk+1
i = ski + vk+1

i (28)

From Eq. (28), elements si and vi represent the posi-
tion and velocity of particle i , respectively; pi and gi
denote the best partial position and best global position
for particle i , respectively, obtained by the empirical
data from the experimental tests; w denotes the iner-
tial weight serving as a tradeoff between the global
and local exploration capabilities of the swarm; c1 and
c2 are the weights of the stochastic acceleration terms,
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determined in advance and pulling each particle toward
pi and gi ; R1 and R2 are the random variables from the
range of [0,1]; k denotes the kth iteration for the cor-
responding elements. To avoid overrun, the limitations
for the position and velocity are set as si ∈ [Smin, Smax]
and vi ∈ [Vmin, Vmax], respectively.

Therefore, based on Eqs. (27) and (28), particles
S, i.e., the optimized input feature Ai , bi of the ELM
network, is associated with improved performance of
the adaptive control term via the optimized ELM algo-
rithm.

4 Robust control term

The main purpose for the robust control term in this
paper is to reject model uncertainties. The residual
errors are producedby the adaptive control processwith
Eq. (26), i.e., error Ei by Eq. (29), shown as follows:

Ei = τAi − τ ∗
Ai = hiβ i − hiβ∗

i (29)

where τ ∗
Ai denotes the optimal approximation of τAi .

Noting that there exists an upper bound of Ei with
|Ei | ≤ Ei_max, the basic form of the robust control
term can be illustrated by Eq. (30), where τ̂Ri repre-
sents the estimated output of the robust control term
and ri represents the i th element of system error r.

τ̂Ri = Ei_maxsign(ri ) (30)

Therefore, the estimated output of the proposed control
strategy τ̂ for the robotic arm can be obtained by Eq.
(31) through Eqs. (20) and (30) in which the positive
definite matrix K represents the gain of the PD control
strategy.

τ̂=[τ̂1τ̂2 . . . τ̂i . . . τ̂n]
τ̂i = τ̂PDi + τ̂Ai + τ̂Ri

= Kri + hi β̂ i + Ei_max · sign(ri ) (31)

5 Stability analysis of the proposed control
strategy

Considering the following Lyapunov function:

Q = 1

2
rTMr + 1

2

n∑
i=1

l∑
j=1

1

γi j
β̃i j β̃i j

β̃i j = β̂i j − β∗
i j (32)

the first derivation of (32) is derived through Eqs. (9)
and (31).

Q̇ = rTMṙ + 1

2
rT Ṁr +

n∑
i=1

l∑
j=1

1

γi j
β̃i j

˙̂
βi j

= rT (Mq̈r + Cq̇r + D − τ − Cr)

+ 1

2
rT Ṁr +

n∑
i=1

l∑
j=1

1

γi j
β̃i j

˙̂
βi j

= rT (Mq̈r + Cq̇r

+D − Kr −
n∑

i=1

hi β̂ i − Emax · sign(r) − Cr)

+ 1

2
rT Ṁr +

n∑
i=1

l∑
j=1

1

γi j
β̃i j

˙̂
βi j

= rT
(

n∑
i=1

hiβ i

−
n∑

i=1

hi β̂ i − Kr − Emax · sign(r) − Cr

)

+ 1

2
rT Ṁr +

n∑
i=1

l∑
j=1

1

γi j
β̃i j

˙̂
βi j

= rT
(

n∑
i=1

hiβ∗
i

−
n∑

i=1

hi β̂ i − Kr − Emax · sign(r)

)
+ rT

n∑
i=1

Ei

−1

2
rT (2C − Ṁ)r +

n∑
i=1

l∑
j=1

1

γi j
β̃i j

˙̂
βi j

= −
n∑

i=1

hi β̃ i ri − rTKr − Emax · rT sign(r)

+ rT
n∑

i=1

Ei +
n∑

i=1

l∑
j=1

1

γi j
β̃i j

˙̂
βi j (33)

Combining Eqs. (26) and (33), the relationship of
Eq. (34) can be obtained as follows:
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Q̇ = − rTKr − EmaxrT sign(r) + rT
n∑

i=1

Ei

= − rTKr − rT (Emax · sign(r)

−
n∑

i=1

Ei ) ≤ −rTKr −
n∑

i=1

(Ei_max − Ei ) |ri | ≤ 0

(34)

Therefore, the stability condition is sufficient according
to Eq. (34), which proves the stability of the proposed
control law.

6 Numerical simulation

In this section, the validity of the proposed control strat-
egy is verified with a planar dynamic model of a space
robot with a 4-DOF robotic arm operating in the free-
floating mode as established by the Matlab/Simulink
software, as shown in Fig. 5. The sampling period
is 0.001 s for the established simulation platform.
The entire system operating in the post-capture stage
has initial linear/angular motion with the initial angu-
lar velocity of 0.25 rad/s for a captured object during
the pre-captured stage, in addition to precise knowl-
edge about the spacecraft as well as the robotic arm
and unknown dynamic parameters about the captured
object in the end-effector. The geometric and inertial
parameters of the system employed in the model are
shown in Table 1, where ai and bi denote the position
vector from the joint i to the centroid of link i and
also from the center of link i to the joint (i +1), respec-
tively; Ii denotes the inertial tensor along the z axis;
link 0 represents the spacecraft, and the attitude angle
and joint angle can be expressed by α and θi , respec-
tively. The parameter setting and initial condition of the
model are illustrated by Table 2, and the interior distur-
bance term d in the robotic system is set by the function
di =(0.8* sign(q̇i )+5*sin(10t)+2* rand(0,1)) for
each joint, where the signal of rand(0,1) means the
value is randomly produced from the range of (0,1).

The total linear/angular momentum of the system
in the post-capture stage is shown in Fig. 6, where
the entire system is shown to be subject to the law of
linear/angular momentum conservation. In the simula-
tion, the adaptive reactionless path planning is consid-
ered via the SW-RLS algorithm and the conventional
RLS algorithm, and the planned path via the two vari-
ous algorithms can be obtained with the parameter set-

spacecraft

objectunknown

1link

2
lin
k

3
link

0b
1a

1b

2a

2b

3a3b4link

4a4b

Fig. 5 Space robot with a 4-DOF robotic arm

Table 1 Geometric and inertial parameters of the space robot

Link i Mass (kg) ai (m) bi (m) Ii (kg· m 2)

0 500 – 0.4 500

1 10 0.25 0.25 0.5

2 10 0.25 0.25 0.5

3 10 0.25 0.25 0.5

4 10 0.25 0.25 0.5

Captured object 20 0.5 – 5

Table 2 Parameter setting of the dynamic simulation

Parameter Value Parameter Value

K Diag (500,
500, 500)

α (0) 0 (rad)

Λ Diag (2, 2, 2) α̇(0)/ω0 0.1 (rad/s)

c1 = c2 0.2 θ1 (0) 0 (rad)

w 2 θ2 (0) π/2 (rad)

Smax = −Smin 1 θ3 (0) 0 (rad)

Vmax = −Vmin 1 θ4 (0) −π/2 (rad)

γ 1 θ̇i (0), i =
1, 2, 3, 4

0 (rad/s)

m 20 v0 [0.5 0.2]T
l 60

ζ̇ [1 1 1 1]T
δ 1.2

εi 2

tings in Table 2 and illustrated in Fig. 7. It can be con-
cluded that the planned path for the robotic arm via the
SW-RLS algorithm exhibits a time-variable feature that
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Fig. 6 Total linear/angular momentum measurement via Eq. (10)

Fig. 7 Adaptive reactionless path planning via various algorithms

keeps pace with Eq. (16), yet the planned path via the
conventional RLS exhibits a saturation phenomenon
that cannot track the time-variable property of the coef-
ficient matrix.

Then, several various control schemes are employed
to track the planned path produced by the SW-RLS
algorithm, expressed as follows:

Scheme 1. Adaptive control strategy via theRBF algo-
rithm: 60 hidden layer nodes (l= 60); the
adaptive law conforming to Eq. (26); the
center f iC , the width σ and the bias of
hidden nodes affiliated with rand(−1,1),

rand(0,1) and rand(0,1), respectively; the
activation function selected by the radial
basis function with hi = exp(−(f i (x) −
f iC )2/(2σ)2); the output of controller τ̂i =
τ̂PDi+τ̂Ai with correspondingK inTable 2.

Scheme 2. Adaptive control strategy via the ELM
algorithm: all initial conditions are in accor-
dance with scheme 1 except that the acti-
vation function is selected by the sigmoid
function with hi = 1/(1 + exp(−f i (x)).

Scheme 3. Robust adaptive control strategy via the
ELM algorithm: all initial conditions are
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Fig. 8 Position tracking error of each joint controller via various control strategies

in accordance with scheme 2 except an
appending robust controller with the out-
put of τ̂i = τ̂PDi + τ̂Ai + τ̂Ri .

Scheme 4. Proposed control strategy: all initial con-
ditions are in accordance with scheme 3
except the optimization of the input weight
matrix for the ELM algorithm via the PSO.

The comparison of the tracking results for control
Schemes 1–4 is shown in Fig. 8 and Tables 3, 4, with
tracking performance and tracking error, respectively.
Then, the angular velocity of the spacecraft is mea-
sured, as shown in Fig. 9, which exhibits the existing
disturbance from the motion of the robotic arm to the
spacecraft as well as to the attitude stability.

According to the tracking results from Fig. 8 and
Table 3, the adaptive control strategy via ELM exhibits
better speed performance compared with adaptive con-
trol strategy via RBF, although the accuracy perfor-
mances of the steady-state error for the two schemes
are both inferior to the robust adaptive control strat-
egy via ELM because of the appending of the robust
control strategy. The proposed control strategy via the
PSO-ELM algorithm exhibits slight tracking accuracy
improvement and shorter transient time; however, an
extremely negligible delay of speed exists compared
with the robust adaptive control strategy via the ELM
algorithm, which reflects the optimization process of
the PSO algorithm to seek and update the optimal input
weight matrix of the network. In addition, Fig. 9 and
Tables 5 and 6 exhibit the stability of the spacecraft atti-
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Table 3 Mean values of position tracking errors for each joint controller (5–40s)

Error (◦) Adaptive control via RBF Adaptive control via ELM Robust adaptive control via ELM Proposed control

Joint 1 0.268 − 0.195 0.121 0.117

Joint 2 0.432 0.386 0.258 0.252

Joint 3 0.124 0.175 0.117 0.112

Joint 4 − 0.091 − 0.781 0.069 0.059

Table 4 Position tracking steady-state mean square errors for each joint controller (5–40s)

Error (◦) Adaptive control via RBF Adaptive control via ELM Robust adaptive control via ELM Proposed control

Joint 1 0.371 0.429 0.381 0.374

Joint 2 0.418 0.301 0.309 0.307

Joint 3 0.241 0.215 0.161 0.151

Joint 4 0.201 0.187 0.182 0.181

Fig. 9 Angular velocity
measurement of the
spacecraft via various
control strategies

Table 5 Mean value of spacecraft angular velocity (5–40s)

Error (◦) Adaptive control via RBF Adaptive control via ELM Robust adaptive control via ELM Proposed control

−0.217 −0.191 −0.187 −0.172

Table 6 Position tracking steady-state mean square of spacecraft angular velocity (5–40s)

Error (◦) Adaptive control via RBF Adaptive control via ELM Robust adaptive control via ELM Proposed control

0.402 0.381 0.392 0.378

tude after capturing an unknown object, where the reac-
tionless control strategyvia the proposed scheme shows
faster and relatively less angular spacecraft velocity as

well as the least disturbance, which validates the pro-
posed method in this paper.
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7 Conclusion

An adaptive reactionless path planning and control
integrated strategy is proposed for free-floating space
robots while capturing unknown objects, achieving
the reactionless motion of a robotic arm and ensur-
ing the stability of the base attitude of the spacecraft.
A SW-RLS algorithm is introduced to avoid the sat-
uration feature and to construct adaptive reactionless
path planning, and a composite control strategy via the
PSO-ELM algorithm is proposed to track the dynamic
changing planning path with the speed and accuracy
enhancement of tracking performance. The notable fea-
ture of the proposed design is that it requires neither
accurate system modeling nor any information about
the unknown properties. Most importantly, the design
can dynamically realize the reactionless path tracking
performance although there are uncertain and abrupt
dynamic parameters from the captured object. The sim-
ulation results validate the proposed method in this
paper, which makes it significant for on-orbit opera-
tions in the future.
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