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Satellite cluster is a type of artificial cluster, which is attracting wide attention at present. Although the traditional empirical
parameter method (TEPM) has the potential to deal with the mission of satellite flocking, it is difficult to select the proper
parameters. In order to improve the flight effect in the problem of satellite cluster, as well as to make the selection of flight
parameters more reasonable, the traditional sensing zones are improved. A 3σ position error ellipsoid and an induction ellipsoid
are applied for substituting the traditional repulsing zone and attracting zone, respectively. Besides, we propose an algorithm of
reinforcement learning for parameter self-tuning (RLPST), which is based on the actor-critic framework, to automatically learn
the suitable flight parameters. To obtain the parameters in the repulsing zone, orientating zone, and attracting zone of each
member in the cluster, a three-channel learning framework is designed.+e learning process makes the framework finally find the
suitable parameters. Numerical experimental results have shown the superiorities compared to the traditional method, which
include trajectory deviation and sensing rate or terminal matching rate, as well as the improvement of the flight paths under the
learning framework.

1. Introduction

Satellite cluster is a new space architecture emerging after
satellite constellation and satellite formation in recent years
[1–3]. Different from the satellite formation, which is
generally required to design geometric configuration and
control desired formation, satellite cluster emphasizes more
on the coordination and cooperation among the members in
a system. +rough the specific technology of satellite cluster,
multiple spacecraft with the same or different functions can
be connected into an organic whole by a self-organizing
network. +us, the system is expected to have the flexibility
to realize one or more tasks [4, 5].

At present, the research of satellite cluster can be gen-
erally divided into two types: one is a long-distance loose
cluster, which mainly considers the drift and periodic
configuration design under long-term condition, and the
other is a short-distance cluster, which involves the tech-
niques about cooperative control and collision avoidance.

For the long-distance cluster, the boundedness of the system
is mainly considered, which means that the influence of
various perturbations on the boundary of the cluster will be
analysed [6]. From the perspective of fuel optimization, the
maneuver sequences will be solved for maintaining the loose
flying of the cluster for a long time. Mazal and Gurfil de-
veloped a cluster flight control algorithm based on fuel-
efficiency for distance-keeping of spacecraft cluster [7].
Based on the relative elements, Wang and Nakasuka applied
nonlinear programming for solving the orbit design of
fractionated spacecraft [8]. For a long-distance cluster, Dang
et al. found the analytic distance bounds for the coplanar
relative motion [9]. On the contrary, the techniques of
multiagent control, such as graph theory and consistency
algorithms, are being continuously studied for the problems
of a short-distance cluster. In the field of formation control
modelled by second-order dynamics, Ren et al. studied the
consensus-based formation control in the absence of cen-
tralised leadership [10, 11]. Considering the fixed and
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switching topologies, Olfati-Saber and Murray solved the
consensus problems for networks of dynamic agents [12].
For the leader-follower consensus problem, Song et al.
proposed a pinning control algorithm based on graph theory
to handle the condition without a strongly connected in-
teraction graph [13]. Aiming at the multivehicle system of
double-integrator dynamic, Qin et al. investigated the
consensus strategies to deal with the time-varying reference
velocity [14]. However, the complex information link and
massive computing are always confusing the algorithms
based on graph or consistency theory.

Inspired by biological clusters, humans have constructed
a variety of artificial clusters, such as robot clusters and
unmanned aerial vehicle clusters. +e traditional empirical
parameter method (TEPM) has been proved to be effective
in many multiagent fields. For describing the motion of
flocking particles, Reynolds created a distributed behav-
ioural model [15]. Vicsek et al. suggested a model where the
particles were driven with constant velocity and the system
was biologically motivated [16]. To reveal the relationship
between the individual and the group based on behavioural
transitions, Couzin et al. presented a self-organizing model
of group formation [17]. Based on these classic models, the
algorithms for realizing the specific missions of the cluster
were proposed [18], and some attraction/repulsion func-
tions, which are used for achieving swarm aggregation, were
designed [19]. With the deep discussion about the inter-
actions between the particles in a swarm, the rule-based
control or behaviour-based control was gradually concerned
to act in dynamic multiagent systems [20, 21]. Specifically, in
the field of aeronautic and aerospace, the behaviour-based
path-planning technique for configuring the cluster struc-
tures [22], avoiding collision [23], and dealing with needs of
aviation swarm convoy [24] were studied, respectively. Due
to the wide application prospect of behaviour control
methods in biological clusters, more and more space
agencies are expecting to introduce the concept of biological
clusters into space systems. In this way, it will be possible to
make the satellite cluster similar to a biological cluster for
completing complex space tasks with simple and cheap
spacecraft. Nevertheless, the selection of the behaviour
parameters, which is generally decided through the expe-
riences from the scholars, has not been very deeply discussed
yet. In order to train the behaviour parameters, one can
apply supervised learning if the prior experiences can be
obtained. However, such experiences are usually hard to
obtain. +erefore, it is a promising direction to find a way to
optimize the parameters without the experience data.

In recent years, reinforcement learning has been paid
more and more attention in the field of intelligent clusters.
+rough interacting with the environment, agents in the
cluster can optimize their maneuvering strategies under the
model-free condition [25,26]. +erefore, the traditional
maneuvering strategies, which are based on man-made
rules, can be improved. Instead of using the fixed rules,
Morihiro et al. proposed a self-organized framework based
on reinforcement learning for the flocking agents to conduct
group missions [27]. In cooperative multirobot systems, Gu
and Yang applied fuzzy policies with policy gradient

approach to solve leader-follower problems [28]. Under self-
organizing principles derived from natural interactions,
Chen et al. solved a swarm pursuit game through a multi-
agent reinforcement learning framework [29], and Hung
and Givigi presented a Q-learning algorithm, which was
applicable to a stochastic environment, for the flocking
fixed-wing unmanned aerial vehicles [30]. +erefore, rein-
forcement learning is a promising method for dealing with
the cluster problem of multiple agents. As the most energetic
branch of present reinforcement learning, the actor-critic
method is suitable for motion problem of continuous agent
systems [31].

In this paper, we propose an innovative self-organizing
algorithm of reinforcement learning for parameter self-
tuning (RLPST), which is based on the actor-critic frame-
work for the path planning of short-distance satellite cluster.
+e proposed learning algorithm is composed of three
channels which can automatically adjust the flight param-
eters of an agent in the zone of repulsing (ZOR), zone of
orientation (ZOO), and zone of attraction (ZOA), respec-
tively. +rough iterative learning, the maneuvering strate-
gies of the cluster can be optimized. In this way, the
disadvantages under traditional control strategies based on
man-made experience parameters for the cluster are broken,
and it is expectable to apply the proposed algorithm in a
variety of clustering tasks.

+e main contributions of this paper are as follows: (1) it
is the first time to apply the actor-critic framework into the
path planning of satellite cluster. Aiming at two kinds of
classical space cluster scenarios, we introduce the rein-
forcement learning to deal with the relative distance between
themembers of short-distance satellite cluster, which fills the
blank of self-parameter tuning based on the heuristic
method in the field of a short-distance satellite cluster.
Under the same three flocking principles of Reynolds, we
have compared the results under the proposed RLPST and
the ones under TEPM and proved the superiority of the
proposed algorithm. (2) It is the first time to apply the actor-
critic framework to optimize the flight parameters of ZOR,
ZOO, and ZOA in a cluster through three channels, re-
spectively, instead of directly optimizing themaneuver of the
agent. In this way, it makes full use of the known model
information. Besides, the learning difficulty when applying
the reinforcement learning to the satellite cluster problem,
which has large-scale continuous state and action space, can
be reduced.

+e structure of this paper is as follows: Section 2
presents the model of satellite cluster and related sensing
areas; Section 3 discusses reinforcement learning algorithms
for continuous systems; Section 4 applies reinforcement
learning to the motion of satellite cluster; Section 5 simulates
the proposed algorithm under two classic scenarios, re-
spectively; and Section 6 discusses the simulation results.
Finally, Section 7 draws the conclusions.

2. Problem Statement

It is supposed that the subject of the research is a satellite
cluster with N members, with a virtual host point, O, which
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is near to the center of the cluster in space. Figure 1 draws the
flocking satellites and the virtual host point. In Figure 2, it
shows that each member in the cluster is an agent, which has
the ability of induction, interacting with the environment.
By inputting the current states and the maneuvering

strategy, the member is able to obtain the reward for pre-
paring the correction of the strategy.

+e symbol θ is denoted as the true anomaly, a as the
semimajor axis, and e as the eccentricity of the orbit of the
virtual host satellite, and then the following equations are
obtained [32]:

_θ �

��
μ
a3

􏽲
(1 + e cos θ)2

1 − e2( )
3/2 ,

€θ � −
μ
a3

2e sin θ(1 + e cos θ)3

1 − e2( )
3 .

(1)

To facilitate the description of the problem, the following
coordinate systems are established: (a) Earth centered in-
ertial (Oxiyizi); (b) orbital coordinate system of themember
satellite (Oxoyozo); and (c) orbital coordinate system of the
virtual host satellite (Oxryrzr). In Oxryrzr, the position

vector xi � [xi, yi, zi]
T is denoted. +erefore, according to

the two-bodymotion rule of spacecraft, ignoring the second-
order small quantities, the dynamic equation of the ith
member in the cluster can be expressed as follows [32]:
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2 + 3

x
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−1 + 3
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i , €zi � −
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x
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􏼢 􏼣 + f
z
i ,􏼨

(2)

where rf represents the distance between the mass point of
the satellite to the origin and f

j
i (j � x, y, z) represents the

force in the corresponding channel.

2.1. Position Error Model of a Cluster Member. +e position
of a satellite is objective; however, it cannot be accurately

known. In different types of missions, there will always be
measurement, navigation, control, and other deviations and
the influences of perturbation. +ese factors will cause the
real orbit diverged from the nominal orbit of the spacecraft,
resulting in trajectory deviation. Taking the Gaussian dis-
tribution as an example, the covariance matrix of the
spacecraft state distribution is denoted as P, and then, it is
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Figure 1: Flocking satellites and the virtual host point.
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Figure 2: +e interaction with the environment of the flocking
satellite member.
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obtained that the real state vector x is in a hyperellipsoid,
which is centered on the nominal state vector x [33, 34]. +e
sphere of the hyperellipsoid can be expressed as follows:

(x − x)
TP− 1

(x − x) � l
2
. (3)

Meanwhile, the probability density function of the rel-
ative state error distribution is

p(l) �
1

�����
(2π)n

􏽰 􏽚
l

0
exp −

1
2
r
2

􏼒 􏼓f(r)dr, (4)

where n represents the dimension of the state space and l

represents the Markov distance constant. Specifically, when
l � 3, equation (3) represents the 3σ error ellipsoid.

+e above equation shows a six-dimensional ellipsoid.
+e matrix, A, is denoted as

A �
P− 1

l2
� − l

2
�

Arr Arv

Avr Avv

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (5)

where the matrix A is a real symmetric positive definite
matrix.+e symbol,R, is denoted as the position component
of x; therefore, the position error ellipsoid of the spacecraft
can be expressed as follows:

RTArrR � 1. (6)

2.2. Sensing Area Division of a Cluster Member.
Traditionally, for dealing with problems of cluster, the
sensing areas, which are generally known as zone of re-
pulsion (ZOR), zone of orientation (ZOO), and zone of
attraction (ZOA), are defined from the inside to the outside
as the spherical regions [17]. Figure 3(a) shows these tra-
ditional ZOR, ZOO, and ZOA. Under such uniform sensing
areas, it will be certainly convenient for describing the
problem and designing the cluster control strategy. How-
ever, considering the location deviations of spacecraft cluster
members and the capability of the attaching sensors, it is
necessary to improve the way for dividing sensing areas.
Here, we redefine the sensing areas of a satellite member in
the cluster, which is illustrated in Figure 3(b).

According to Figures 3(a) and 3(b), we see that, for each
member satellite in the cluster, there exists three sensing
areas. Compared with the traditional sensing areas, the
redefined ones have replaced the ZOR and ZOA part with
the 3σ error ellipsoid and the induction ellipsoid, respec-
tively. +e details of the redefined sensing areas are
expressed below.

2.2.1. ZOR. +e 3σ error ellipsoid area of each member is
defined as the zone of repulsion. It is assumed that the
position deviation obeys the Gaussian distribution. As a
result, each member in the cluster has its own position error
ellipsoid. If the ellipsoid of a specific member interacts with
the one of other individuals, the collision between the two
members may occur. +erefore, such an ellipsoid is the ZOR
for making repulsive force to avoid the probable collision.
+e members in the ZOR will make repulsive force on the

center member. In this way, it will avoid the individuals in
the cluster getting too close from each other.

2.2.2. ZOO. +e orientation area is defined as a standard
sphere with a specific radius. For a specific member, its ZOO
is an ideal zone that neighbours, which are located in such an
area, keep suitable distance with this specific member. +is
member will receive the orientation force from the neigh-
bours in its ZOO, which makes the member tends to align its
speed with its neighbours gradually. In this way, the flight
process will be smooth.

2.2.3. ZOA. +e attracting area is defined as the induction
ellipsoid. Traditionally, the attracting area is uniform.
However, in the case of spacecraft cluster problem, due to
the capability of the sensing elements, the sensing ability
may be strong or weak in different directions. +erefore, we
use an ellipsoid model to nearly describe the induction area
of the member in the cluster.

2.3. Location Criterion of Sensing Zones. For the members
located in the sensing areas of the ith satellite, it is important
to determine which region these members belong to. In
traditional ways, the belonging sensing area is usually de-
termined by the location of the mass center of the member.
Different from the traditional method, this paper applies the
idea of the Box method [35], which takes the location re-
lation of error ellipsoids as the criterion to judge whether
two members in the cluster are repulsive or not. If the error
ellipsoids intersect with each other, the repulsion force will
be generated between the two members.

In order to detect the position relation between the two
error ellipsoids, the algebraic criterion is needed. During this
process, it needs to carry out the affine transformation on the
two ellipsoids. +e process of affine transformation is shown
in Figure 4.

Suppose that the S1 frame, which is centered at the
nominal mass point of ith member, is parallel to Oxryrzr.
+en, the position error ellipsoid of the ith member is
expressed as follows:

RTAi
rrR � 1. (7)

Denote the symbol X � [x, y, z, 1]T; therefore, the error
ellipsoids of the ith member and the jth member can be
transformed as

XTBS1
i X � XT Ai

rr 03×1

01×3 −1
⎡⎣ ⎤⎦X � 0,

XTBS1
j X � XT T−1

1􏼐 􏼑
T Aj

rr 03×1

01×3 −1
⎡⎣ ⎤⎦T−1

1 X � 0,

(8)

where BS1
i and BS1

j are ellipsoidal quadratic matrices and T1
is a translation matrix for the jth member.

+e details of the affine transformation process are
shown in Appendix A. Here, we have the final expressions:
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XTBS4
i X � x − d1( 􏼁

2
+ y − d2( 􏼁

2
+ z − d2( 􏼁

2
− 1 � 0, (9)

XTBS4
j X �

x2

a2 +
y2

b2
+

z2

c2
− 1 � 0, (10)

where the frame comes to S4 and the condition a≤ b≤ c is
satisfied.

+erefore, we can obtain the standard discriminants as
equations (9) and (10). +e characteristic polynomial is
defined as follows:

f(λ) � det λBS4
j + BS4

i􏼐 􏼑. (11)

+e relevant characteristic equation of the above poly-
nomial is

f(λ) � 0. (12)

According to the location judging algebraic criterion
[36], the position relation between the ellipsoid of the ith
member and the one of the jth members can be detected.

If the characteristic equation has two different real
roots, the two ellipsoids are separated. +us, it will be easy
to judge if the jth member locates in the ZOO or ZOA of

the ith member or not. Otherwise, the two ellipsoids are
not separated, which means that the jth member locates in
the ZOR of the i member, and the repulsive force is
generated.

2.4. Analysis of the Force Acting in Sensing Areas. For the ith
member, when the sensing sets Xr, Xo, and Xa, which relate
to the ZOR, ZOO, and ZOA, respectively, are obtained, we
can calculate the force directions of the ith member. It is
noted that, for each member in a cluster, the member will
have its own ZOR, ZOO, and ZOA. +erefore, we only talk
about the condition of an arbitrary member in a cluster here.
When this arbitrary member is mentioned, it is called
“center member” for distinguishing it from the neighbours
in its three sensing areas.

2.4.1. Force Direction in ZOR. From the left part in Fig-
ure 5, it shows that the individual m is closer to the center
member than the individual n under the S1 frame.
According to the traditional repulsive rule, the center
member will be repulsed by the individual m more than
the individual n. However, for the ellipsoidal ZOR of the
center member, the intensity of the repulsive force should
be related to the close degree from the individual m or n to
the boundary of ZOR. Because the traditional repulsing
area is defined as a standard sphere, the boundary is
uniform in all directions, which is convenient to calculate
the intensity of the repulsive force. +erefore, a special
treatment is needed to deal with the nonuniform
boundary of the repulsive area, which is shown in the right
part in Figure 5. After the affine transformation process,
the distance from the center member to the individual m

and the one to the individual n is approximately equal. +e
reason of this situation is because that both of the indi-
vidual m and n are originally near to the boundary of the
repulsing area.

+erefore, through the matrix, Ttr, which represents the
transformation matrix from the S1 frame to the S2 frame, the
direction of repulsive force of the ith member in the cluster is
expressed as

The traditional ZOR
The traditional ZOO
The traditional ZOA

(a)

The proposed ZOR
The proposed ZOO
The proposed ZOA

(b)

Figure 3: Sensing area division of member satellite in the cluster: (a) traditional sensing areas; (b) proposed sensing areas.
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Figure 4: Affine transformation process on the ellipsoids of the ith
and the jth member.
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p
i
r � T−1

tr 􏽘
j∈Xr

1
􏽥rij

�����

�����
−

1
dr

⎛⎝ ⎞⎠􏽥rij
⎛⎝ ⎞⎠/ 􏽘

j∈Xr

1
􏽥rij

−
1
dr

􏼠 􏼡􏽥rij􏼠 􏼡

����������

����������
,

(13)

where 􏽥rij is the relative position vector in S2 frame and dr is
the boundary of the repulsing area, which is expressed as
follows:

dr � 1.2max
j∈Xr

􏽥rij

�����

�����. (14)

It is noticed that the constant coefficient 1.2 is used to
avoid ambiguity caused by zero denominator.

2.4.2. Force Direction in ZOO. Due to the specific definition
of ZOO, which is a standard sphere with radius dm, the
direction of orientation force can be expressed as

p
i
o �

vi + 􏽐j∈Xo
vj

vi + 􏽐j∈Xm
vj

�����

�����
, (15)

where vi and vj represent the velocity of the ith member and
the jth member in Oxryrzr, respectively.

2.4.3. Force Direction in ZOA. Compared with the tradi-
tional ZOA, the proposed ZOA is set as the induction area of
the center member, which means that the sensing ability is
not uniform for the center member. In addition, we need to
guarantee that the intensity of attractive force should be zero
at the boundary of ZOO. As a result, the corresponding
boundary of attracting area of each member in the cluster
needs to be calculated.

+e direction of the attractive force is expressed as

p
i
a � 􏽘

j∈Xa

1/da − rij􏼐 􏼑 − 1/da − dm( 􏼁􏼐 􏼑rij

1/da − rij􏼐 􏼑 − 1/da − dm( 􏼁􏼐 􏼑rij

�����

�����
, (16)

where da is the boundary of the attracting area, which can be
defined as follows:

da � 1.2max
j∈Xa

rij

�����

�����. (17)

It is noted that, in Figure 6, we see that the individual m

and the individual n are located at the boundary of ZOA.+e
center member is expected to judge which is the farthest
neighbour in its ZOA. +en, the relative position vector
from the center to that neighbour will be used to generate da.

When the virtual host satellite is in a circle orbit or near-
circle orbit, the conditions, _θ � n and €θ � 0, are satisfied. To
denote the symbol as X � x y z _x _y _z􏼂 􏼃

T, the dynamic
model, which is expressed in equation (2), can be rewritten
as follows:

_X �

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

y

z

_x

_y

_z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

fx

fy

fz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� BX + Ca.

(18)

To denote the symbols, cri ∈ [−cmin
ri , cmax

ri ]a,
coi ∈ [−cmin

oi , cmax
oi ], and cai ∈ [−cmin

ai , cmax
ai ] as the flight pa-

rameters related to ZOR, ZOO, and ZOA respectively, the
motion controller of the ith member in the spacecraft cluster
is designed as

ai � −BX − ] + crip
i
r + coip

i
o + caip

i
a, (19)

where ] � _x _y _z􏼂 􏼃
T and i � 1, 2, . . . , N. It is noticed that

the term −BX − ] is added to make the agent move stably
during the control gap.

Based on equations (13) to (16), the force directions of
the ith member, pi

r, pi
o, and pi

a, can be calculated. +erefore,
for the controller shown in equation (19), the key is to find
the corresponding parameters cri, coi, and cai. +e effect of
cluster flight will be largely determined by these parameters.

In traditional ways, the parameters are selected
according to the experimental results or the expert expe-
riences, which is known as TEPM. Nevertheless, considering
the intelligent development of spacecraft and the raising
labour cost, the satellite cluster needs to have a certain
automatic capability to adjust the parameters in the future.
To achieve this goal, an innovative algorithm of RLPST is
proposed, which applies the reinforcement learning
framework and is expected to make the flight parameters
self-tuned along with multiple learning times.

(a) (b)

m

n

m

n

S1
S2

Figure 5: Affine transformation process in repulsing area. m

n

dm

da

Figure 6: Affine transformation process in attracting area.
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3. Continuous Reinforcement Learning

3.1. 3e Fuzzy Inference System. In order to apply the re-
inforcement learning into the space cluster, which has
continuous dynamic systems, it is reasonable to find a way to
not only avoid the curse of dimensionality but also have the
clear physical meaning. +erefore, a zero-order Taka-
gi–Sugeno (T-S) fuzzy system is employed as the approx-
imator. It is assumed that the fuzzy system has L rules and n

input variables. +e fuzzy inference rule is

Rule l: IF s1 isF
l
1, . . . , and sn is F

l
n then zl � ϕl, (20)

where si(i � 1, . . . , n) represents the ith input of the fuzzy
system, Fl

i represents the fuzzy set of the ith input variable, zl

represents the output of the lth rule, and ϕl represents the
output parameter.

With the h membership functions of each si, the output
of the fuzzy system is expressed as

Z(s) �
􏽐

L
l�1 􏽑

n
i�1μFl

i si( 􏼁􏼐 􏼑ϕl􏽨 􏽩

􏽐
L
l�1 􏽑

n
i�1μFl

i si( 􏼁􏼐 􏼑
� 􏽘

L

l�1
Ψl(s)ϕl, (21)

where s � [s1, . . . , sn]T is the state vector and μFl
i is the

membership function of si under the lth rule. In addition, the
expression of Ψl(s) is as follows:

Ψl(s) �
􏽑

n
i�1μ

Fl
i si( 􏼁

􏽐
L
l�1 􏽑

n
i�1μFl

i si( 􏼁􏼐 􏼑
�

ωl(s)
􏽐

L
l�1ωl(s)

. (22)

3.2. 3e Actor-Critic Learning Algorithm. Reinforcement
learning is a type of algorithm that interacts with the en-
vironment. +e agent optimizes its behaviour through the
rewards obtained from the environment for maximizing the
total benefits. In the Markov process, the value function of
reinforcement learning can be expressed as

Vt st( 􏼁 � E􏼨 􏽘

∞

i�t

c
i− t

Ri􏼩, (23)

where c ∈ [0, 1) is the discount factor and Ri is the im-
mediate reward which is obtained from the environment.

In order to solve Markov decision problem in contin-
uous action space, a type of reinforcement learning algo-
rithm called adaptive heuristic critic (AHC) has been widely
studied and applied. In the AHC algorithm, the value
function and the policy function are approximated, re-
spectively. In this way, the learning structure is called the
actor-critic framework. In such a learning algorithm, the
critic part is used to estimate the value function, while the
actor part is used to generate the action. To generalize the
state space and the action space, the critic part and the actor
part are both composed of T-S systems. To apply the
temporal difference (TD) learning method, we need two
critic parts for estimating the current value function Vt(st)

and the next value function Vt(st+1). +e temporal differ-
ence can be expressed as follows:

Δt � Rt + cVt st+1( 􏼁 − Vt st( 􏼁. (24)

E is denoted as the variance of the difference signal,
which is shown as

E �
1
2
Δ2t , (25)

and the adaptive update rule of the parameters in the critic is
expressed as

ϕC
(t + 1) � ϕC

(t) − α
zE

zϕC
, (26)

where α is the learning rate of the critic.
Furthermore, according to the gradient descent method,

it is shown that
zE

zϕC
� Δt −

zVt st( 􏼁

zϕC
􏼢 􏼣. (27)

To sum up, we have

ϕC
(t + 1) � ϕC

(t) − α Rt + cVt st+1( 􏼁 − Vt st( 􏼁􏼂 􏼃 −
zVt st( 􏼁

zϕC
􏼢 􏼣,

(28)

pc
zVt st( 􏼁

zϕC
� Ψ1 st( 􏼁,Ψ2 st( 􏼁, . . . ,ΨL st( 􏼁􏼂 􏼃. (29)

Combining with equation (22), equation (28) can be
solved.

+e adaptive update rule for the critic part is shown as
above. As for the actor part, the adaptive update rule of the
output parameter, ϕA, is expressed as

ϕA
(t + 1) � ϕA

(t) + βΔt

zut

zϕA
, (30)

where β is the learning rate of the actor. +e partial de-
rivative of ut is expressed as follows:

zut

zϕA
� Ψ1 st( 􏼁,Ψ2 st( 􏼁, . . . ,ΨL st( 􏼁􏼂 􏼃. (31)

4. Algorithm of Reinforcement Learning for
Parameter Self-Tuning in Satellite Cluster

+e proposed learning framework in this paper is single-
looped, which can be divided into three channels of re-
pulsing area (r), orientating area (o), and attracting area
(a), respectively. +e input of the fuzzy system is single,
which is defined as the proportion of the total number of
the sensing members in every sensing area. +e ith
member is taken as an example, and its inputs for fuzzy
systems are expressed as

sa �
na

N
,

so �
no

N
,

sr �
nr

N
,

(32)
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where na, no, and nr represent the number of sensing
neighbours in the repulsing area, orientating area, and
attracting area, respectively. Besides, the symbol N repre-
sents the total number of all sensing neighbours of the ith
agent. +erefore, sa, so, and sr represent the proportions of
sensing members in the corresponding areas.

+e critic part and the actor part are composed of fuzzy
systems. +e inference rule is shown as

Rl

􏼌􏼌􏼌􏼌q : IF sq isA
l
q THENZl

􏼌􏼌􏼌􏼌q �ϕC
l

􏼌􏼌􏼌􏼌􏼌q
, (33)

where ·{ }|q represents the variable in the q channel
(q � a, o, r{ }). As mentioned in Section 3.1, it is supposed
that the input has h membership functions and the fuzzy
system has L rules in total. It is noticed that, because the
input is single, it meets that L � h. +erefore, according to
the membership degree of the input, the output can be
calculated:

Ψl

􏼌􏼌􏼌􏼌q �
μAl

q

􏽐
L
l�1 μAl

q􏼐 􏼑
, (34)

Vq � 􏽘
L

l�1
Ψl

􏼌􏼌􏼌􏼌 q􏼐 􏼑 · ϕC
l

􏼌􏼌􏼌􏼌􏼌 q􏼒 􏼓, q � r, o, a. (35)

+e fuzzy inference process of the actor part is similar to
that of the critic part and the difference lies in the conse-
quent parameter to each membership degree:

cq � 􏽘
h

l�1
Ψl

􏼌􏼌􏼌􏼌 q􏼐 􏼑 · ϕA
l

􏼌􏼌􏼌􏼌􏼌 q􏼒 􏼓, q � r, o, a. (36)

+e three sensing areas have different proportions of
sensing members; therefore, the designed reward function,
Rt|q, is expressed as

Rt �

Rt

􏼌􏼌􏼌􏼌r � 10, Rt

􏼌􏼌􏼌􏼌o � 0, Rt

􏼌􏼌􏼌􏼌a � 0, sr > 0,

Rt

􏼌􏼌􏼌􏼌a � 10, Rt

􏼌􏼌􏼌􏼌o � 0, Rt

􏼌􏼌􏼌􏼌r � 0, sr � 0, sa > ε,

Rt

􏼌􏼌􏼌􏼌o � 10, Rt

􏼌􏼌􏼌􏼌r � 0, Rt

􏼌􏼌􏼌􏼌a � 0, others.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

From the structure of the reward function, it is shown
that if the proportion of the sensing member, sr, is positive,
the system will receive a positive reward, which will stim-
ulate the system to enhance the coefficient of force in the
repulsing sensing area. Except that the condition where sr is
positive, the rewards of other sensing areas will be decided
according to the states of sa. When sa is larger than ε, which
is a positive separator, the reward about ZOA is positive;
otherwise, the reward about ZOO is positive. It is mentioned
that the rewards of the three areas cannot be calculated
simultaneously. Otherwise, it may make the parameters
enhanced simultaneously, which may make the learning
invalidate. +erefore, the calculation process of the reward
needs to be prioritized according to specific tasks. +e whole
diagram of learning logic is illustrated in Figure 7.

In Figure 7, there exists two critic parts and one actor
part in each channel. +e two critic parts are applied to
estimate the value of current time, V(t), and the value of
next time, V(t + 1). According to sa(t), so(t), and sr(t), the

parameters, cai, coi, and cri are calculated. Bring these pa-
rameters into the motion controller, which is designed in
equation (19), sr(t + 1), so(t + 1), and sa(t + 1) are obtained.
Besides, the immediate reward, Rt, is also acquired from the
environment. According to Rt, V(t), and V(t + 1), the time
difference, Δt, is calculated. +e output parameters of the
critic part and the actor part can be adjusted according to Δt.

To sum up, the learning algorithm of RLPST is shown as
Algorithm 1.

5. Simulation

A cluster with four satellite members, which are numbered
from No. 1 to No. 4, is selected as the numerical experimental
object. It is supposed that the reference orbit is a circular orbit
with the radius of 104 km. +e symbols, x10, x20, x30 and x40,
are denoted as the initial states of the satellites in the cluster
from No. 1 to No. 4. +e first three items of these vectors
represent the relative position in m, while the last three items
represent the relative velocity in m/s. In this numerical ex-
periment, for each cluster member, the quadratic matrix of
the position error ellipsoid is set asA and that of the induction
ellipsoid is set asM. Based on the reference in [33, 34, 37], the
values of A and M are set as follows:

A �

215.41 −84.43 56.29

−84.43 312.91 −97.50

56.29 −97.50 231.66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

M �

3.11e− 7 2.19e− 8 −4.65e− 9

2.18e− 8 2.78e− 7 3.63e− 8

−4.65e− 9 3.63e− 8 2.92e− 7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(38)

Two classic scenarios, which include the scenario of
adding members into the cluster and the scenario of
members following a flight path, are considered, respec-
tively. It is noticed that when we talk about adding members,

sa (t)

sa (t)

so (t)

so (t)

sr (t)

sr (t)

sa (t + 1)

so (t + 1)

sr (t + 1)

Critic
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CriticCritic
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Figure 7: +e diagram of learning logic.
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the combination of No. 1 and No. 2 is set as the original
cluster, while No. 3 and No. 4 are the ones who want to add
into. Besides, when the members are following a flight path,
No. 1 is set as the leader satellite, which holds a desired path,
and others are the ones who need to follow the path of No. 1.
With the limits of cri ∈ [−20, 20], coi ∈ [−20, 20], and
cai ∈ [−20, 20], the experimental results are shown below.

5.1. Scenario of Adding Members into the Cluster. In this
scenario, satellites No. 1 and No. 2, which are considered as
the members of original cluster, are flying together with a
proper distance. Satellites No. 3 and No. 4 aim to merge into
the cluster from the different directions, respectively. +e
goal of the mission is to make the four members get into a
new cluster with a proper distance from each other at the
terminal time. A proper distance means that there is no
neighbour located in the ZOR of each member in the cluster,
and it makes the neighbours located in the ZOO as much as
possible. +e initial states of the cluster are listed in Table 1.

For representing the smoothness of the flight paths, the
signal σ is defined to express the deviation degree from the
whole flight path to the center baseline:

σ �

��������������������

􏽘
N

i�3
􏽚

T

t�0
ρi(t) − ρref(t)( 􏼁

2

􏽶
􏽴

, (39)

where ρi and ρref represent the position vector of the ith
member and the corresponding position vector on the center
baseline, respectively.

For the mission of adding members into an original
cluster, it is appropriate to judge the terminal matching
degree of new adding members. +erefore, the signal ηm,
which is called the terminal matching rate, is defined to
represent the degree of terminal status in ZOO:

ηm �
􏽐

N
i�3 Num

m
i

􏽐
N
i�3 (N − 2)

, (40)

where Numm
i represents the number of neighbours in the

ZOO of the ith member.
In order to express the effectiveness of improving the

flight paths under the proposed RLPST, the signal Cost is
defined to represent the quality of distances among new
adding members, which is shown as

Cost � 􏽘
N

i�3,j∈Xr

􏽚
T

t�0
mr

1
rn(t)

����
����

􏼠 􏼡dt

+ 􏽘

N

i�3,j∈Xa

􏽚
T

t�0
ma rn(t)

����
����􏼐 􏼑dt,

(41)

where mr and ma represent the corresponding coefficients of
sets Xr and Xa, respectively.

k is denoted as the empirical parameter to substitute the
value of cr, co, and ca in TEPM; then, the experimental
results under the simulation time T with 1000 s are shown
below.

From Figures 8(a) and 8(b), the trajectories of TEPM
with k � 3 and k � 6.5 are illustrated, respectively. In
Figure 8(a), it is seen that the terminal positions of the four
members are relatively far away from each other, which does

(1) for all cluster members do
(2) for all channel do
(3) Initialize the membership functions
(4) Initialize Vq � 0, ϕC

l |q � 0, ϕA
l |q � 0, for l � 1, . . . , L;

(5) end for
(6) end for
(7) for each episode do
(8) for all cluster members do
(9) Initialize states of the cluster member
(10) for all Time step do
(11) Calculate the 3σ position error ellipsoid according to equation (7)
(12) Maintain all sensing neighbours of the cluster member
(13) Obtain the sensing sets, Xr, Xo, and Xa, respectively, based on the results of equation (11)-equation (12)
(14) Calculate the force direct pr

i , po
i , and pa

i according to equation (13), equation (15), and equation (16), respectively
(15) for all channel do
(16) Calculate the output of the actor cq through equation (36)
(17) Calculate the output of the critic Vq(t) from equation (35)
(18) Interact with the environment
(19) Obtain the reward Rt, and the output of the critic Vq(t + 1)

(20) Calculate the time difference Δt from equation (24)
(21) Update ϕC

l |q and ϕA
l |q � 0 according to equation (26) and equation (30), respectively

(22) end for
(23) end for
(24) end for
(25) end for

ALGORITHM 1: RLPST.
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not satisfy the requirement of the mission. +is is because
the empirical parameter is selected too small. On the con-
trary, from Figure 8(b), due to the large empirical parameter,
it shows the nonsmooth trajectories of satellites No. 3 and
No. 4. Although the requirement of terminal positions of the
four satellites is guaranteed, the flying process will waste
unnecessary fuels for the nonsmooth flight paths. +erefore,
it is seen that we will easily get confused for the selection of
empirical parameter under the TEPM. Whether the pa-
rameter is selected too large or too small, the flying effect
cannot meet the goal of mission.

To compare with the results of TEPM, we set the dis-
count factor c as 0.8, the reward separator ε as 0.5, the
learning rate of the critic α as 10− 7, the learning rate of the
actor β as 10− 8, the coefficients in equation (41) mr as 1000,
and ma as 10− 3. +us, the results under the proposed RLPST
are shown in Figures 9 and 10, where the results of members
adding with different learning times are illustrated, re-
spectively. From Figure 9(a), it is seen that the original
cluster (which includes satellite No. 1 and satellite No. 2)
keeps normally flying, and satellites No. 3 and No. 4 are far
from the original cluster at the beginning. In addition,
satellite No. 4 is moving nearly in the same direction as the
original cluster, while satellite No. 3 is the opposite.
Attracted by the original cluster, satellites No. 3 and No. 4
begin to move, where satellite No. 3 appears the tendency to
change the moving direction, and satellite No. 4 keeps
moving forward. In Figure 9(b), it can be seen that, with the
increase in learning times, the direction changing is fixed,
and the satellites No. 3 and No. 4 have basically determined
the same flight direction as the original cluster. However,
they have not integrated with each other yet and they are still
attracted by the original cluster continuously. Figure 10
shows the finished training results after 55 times of learn-
ing. As the flight progresses, satellites No. 3 and No. 4 finally
have merged into the original cluster to form a new cluster,
and the mission of adding members is completed.

Figure 11 shows the trajectory deviations under the
TEPM and the proposed RLPST, respectively. It is seen that
the deviation under the TEPM is relatively large when the
empirical parameter is set too large or too small.+e result is
reasonable because when the empirical parameter is too
small, the whole flying condition cannot meet the terminal
requirement of the mission, and when the empirical pa-
rameter is too large, the flight paths are nonsmooth, which
may cause large trajectory deviation as well. When the
empirical parameter is set to be an acceptable value, the
trajectory deviation will meet the low point in the figure.
However, compared with the proposed RLPST, the deviation
under the RLPST is obviously lower than that under the
TEPM, which means that the proposed RLPST has more

smooth flight path which is a benefit for saving fuels and
avoiding complex maneuvering strategies.

+e terminal matching rate represents the final states of
the cluster, and the ideal value is equal to one, which means
that the adding member keeps a moderate distance with not
only the original cluster members but also other adding
members. From Figure 12, it is seen that the rate is different
with different empirical parameters, which means that the
matching rate cannot be guaranteed optimal under the
TEPM. On the contrary, the solid line represents the rate
under the RLPST, and it is clear that the rate is equal to one
when the learning process is finished.

From Figure 13, the variation in the cost line along with
learning times is illustrated. It is clearly seen that the cost is
generally decreased with the increasing learning times. +e
figure indicates that the learning process has reduced the
cost effectively, whichmeans that the total flying condition is
improved gradually during the process.

5.2. Scenario of Members following a Flight Path. In this
scenario, satellite No. 1 is a leader, which has the desired
flight path. Satellites No. 2 to No. 4 are expected to follow the
path of the leader. +e task requires that satellites No. 2, No.
3, and No. 4 can trace the leader effectively. +e initial states
of cluster members are shown in Table 2.

Similar to Section 5.1, to express the deviation degree
from the whole flight path to the center baseline, the fol-
lowing definition is executed:

σ �

��������������������

􏽘
N

i�2
􏽚

T

t�0
ρi(t) − ρref(t)( 􏼁

2

􏽶
􏽴

, (42)

where ρi and ρref represent the position vector of the ith
member and the corresponding position vector on the center
baseline, respectively.

Besides, the signal Cost is also defined to represent the
quality of distances among new adding members, which is
shown as follows:

Cost � 􏽘
N

i�2,j∈Xr

􏽚
T

t�0
mr

1
rn(t)

����
����

􏼠 􏼡dt

+ 􏽘
N

i�2,j∈Xa

􏽚
T

t�0
ma rn(t)

����
����􏼐 􏼑dt.

(43)

In addition, in the scenario of members following a
leader, it will be reasonable to care about how many
neighbours can each member sense. +e more neighbours
that a member can sense, the more information can the
member obtain, which will be benefit for planning the flight
paths. +erefore, the symbol ηs is defined as the sensing rate
for representing the degree of sensing ability of the members
in the cluster:

ηs �
􏽐

N
i�2 Num

s
i

􏽐
N
i�2 (N − 1)

, (44)

Table 1: Initial states of the members in the cluster.

State Value
x10 [0; 100; 0; 2.678 × 10− 2; −4.715 × 10− 5; 0]T

x20 [0; −100; 0; −2.678 × 10− 2; −5.608 × 10− 3; 0]T

x30 [0; 1000; 0; 2.680 × 10− 2; −4.715 × 10− 5; 0]T

x40 [−1000; −1000; 0; −2.678 × 10− 2; −5.608 × 10− 3; 0]T
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where Nums
i represents the number of neighbours that the

ith member can sense.
We set the discount factor c as 0.8, the reward separator ε

as 0.2, the learning rate of the critic α as 5 × 10− 4, the
learning rate of the actor β as 10− 4, the coefficients mr as
1000, and ma as 10− 3. +us, the experimental results under
the simulation time T with 1000 s are shown below.

From Figures 14(a) and 14(b), the trajectories under
TEPM with k � 6 and k � 22 are illustrated, respectively. In
Figure 14(a), it is seen that satellites No. 2 to No. 4 fly aside
from satellite No. 1 in the latter half of flight. +e reason why
their flight paths deviate from the leader is because that the
empirical parameter is set too small that themembers cannot
sense the leader. It indicates that, in TEPM, if the empirical

parameter is too small, some unexpected situations will
occur which may result in the failure of the mission. In
Figure 14(b), it is seen that the flight paths of the members
are nonsmooth, which is not a good flight condition for
following the leader. Certainly, this is because of the large
value of the selected empirical parameter. Figures 14(a) and
14(b) have further explained the difficulties for selecting
empirical parameter. +e unsuitable selections may cause
bad flying results or even lead to the failure of the mission.
Besides, compared with the results from the Figures 14(a)
and 14(b), the final training effect of members flight fol-
lowing under RLPST is illustrated in Figure 15. It is seen that
satellite No. 1 is the leader in the cluster and satellites No. 2,
No. 3 and No. 4 are scattered from each other at initial
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Figure 8: Trajectories of TEPM with different empirical parameters in the scenario of adding members: (a) k� 3; (b) k� 6.
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Figure 9: Results of the training different times in the scenario of members adding: (a) 2 times; (b) 30 times.
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condition. When the training is finished, satellites No. 2 to
No. 4 have the ability to follow the leader successfully and
keep a smooth flight path.

From Figure 16, it is seen that when the empirical pa-
rameter is set from 12 to 16, the sensing rate is equal to one.
In such a condition, all members in the cluster can sense
other members during the whole flight. However, when the
empirical parameter is too small or too large, the sensing rate
will not be guaranteed to be one, which means that flight
effect may be badly influenced. On the contrary, the solid
line represents the sensing rate under the proposed RLPST,
which is guaranteed to be one when the learning process is
finished. +e figure shows the superiority of the proposed
RLPST because of the assurance of the optimal sensing rate.

Figure 17 shows the trajectory deviations under the
TEPM and the proposed RLPST, respectively. Similar to the

condition shown in Figure 11, when the empirical parameter
is too small or too large, the deviation is obviously high
because of the badly flight results. In the figure, if the pa-
rameter is chosen as about 12, it has the lowest value of
deviation. However, compared with the value under RLPST,
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Figure 10: Results of the final training in the scenario of members
adding.
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Figure 11: Curves of trajectory deviations under TEPM and RLPST
in the scenario of adding members.
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Figure 12: Curves of terminal matching rate under TEPM and
RLPST in the scenario of adding members.
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Figure 13: Curve of cost line along with learning times in the
scenario of adding members.

Table 2: Initial states of the members in the cluster.

State Value
x10 [0; 0; 0; 0; 0; 0]T

x20 [500; 500; 0; −2.678 × 10− 2; −5.608 × 10− 3; 0]T

x30 [−500; 500; 0; 2.680 × 10− 2; −4.715 × 10− 5; 0]T

x40 [−500; −500; 0; −2.678 × 10− 2; −5.608 × 10− 3; 0]T
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it indicates that the value under RLPST is still smaller than
the lowest value under TEPM.+erefore, the RLPSTmethod
has the ability to meet the more lower deviation within the
safety flight range, whichmakes the flight pathmore smooth.

From Figure 18, the variation in cost along with the
learning times is illustrated. Similar to the curves drawn in
Figure 13, the cost is generally decreased with the increase in
learning times. When the learning process is finished, the
near lowest cost for the mission is found.+e figure indicates
that the flight condition is gradually improved during the
learning process, and the cost of the flight can be effectively
reduced through the proposed RLPST.

6. Discussion

In Section 5.1, we simulate the scenario of members adding
under the TEPM and the proposed RLPST, respectively. +e

results show that it is difficult to select proper empirical
parameters under TEPM. In addition, the trajectory devi-
ations and terminal matching rates under TEPM and RLPST
are compared. +e trajectory deviation under RLPST is
lower than that under TEPM. On the contrary, the value of
the terminal matching rate under RLPST is guaranteed to
equal to one, while that under TEPM cannot be. +erefore,
the superiorities of the proposed RLPST are obviously
proved. +e variation in the cost along with the learning
times shows the flight paths can be gradually improved
through the learning framework.

In Section 5.2, the scenario of members flight path
following under the TEPM and the proposed RLPST are
simulated, respectively. Apart from the superiorities of
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Figure 14: Trajectories of TEPM with different empirical parameters in the scenario of members following a flight path: (a) k� 6; (b) k� 22.
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Figure 15: Results of final training in the scenario of members
following a flight path.
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scenario of members following a flight path.
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RLPST in the aspects of low trajectory deviation and de-
creasing cost, the sensing rate under RLPST shows the
advantage compared with that under the TEPM, which
means that RLPSTmethodmakes the cluster member be able
to obtain more information from neighbours for completing
the mission. A steep downward trend in Figure 18 is due to
the selection of learning rates. At the final part of learning

process, the performance of the cluster becomes sensitive to
the learning rates, which is still a challenging problem.

+e time cost and iteration times for the two simulated
scenarios are listed in Table 3.

By comparing with the similar studies of [29, 30], it is
seen that the time costs and iteration times of the two
simulated scenarios are acceptable, which means the pro-
posed RLPSTcan improve the flight path within a reasonable
payment.

7. Conclusion

Due to the difficulties of parameter selection under TEPM
for satellite cluster flying, a type of parameter-self-tuning
method based on the actor-critic algorithm is proposed for
handling the problem. Considering the specific condition of
satellite cluster, the three sensing zones are redefined and the
method for determining the belonging zones of sensing
members of each cluster member is presented. To tune the
flight parameter in each sensing zone, the fuzzy inference
systems are employed to compose the actor and critic parts.
With the proper design of reward function, a three-channel
learning framework of parameter self-tuning for satellite
cluster is designed. Compared with the TEPM, the proposed
RLPST algorithm shows the superiorities. +e results of
simulation experiments indicate that the proposed RLPST
has the lower trajectory deviation and guarantees the better
terminal matching rate for scenario of members adding as
well as the better sensing rate for scenario of members flight
path following than the TEPM. Besides, the numerical ex-
perimental results also have shown the decrease in the cost
along with the learning times in the two scenarios, which
proves that the proposed RLPST has the ability to gradually
improve the flight paths of the satellite cluster under the
learning framework.

Appendix

A. The Affine Transformation Process

Recall the S1 frame, which is centered at the nominal mass
point of ith unit, is parallel to Oxryrzr. +e position error
ellipsoid of the ith unit is expressed as

RTAi
rrR � 1. (A.1)

Denote the symbol X � [x, y, z, 1]T; therefore, the error
ellipsoid can be transformed as

XTBS1
i X � XT Ai

rr 03×1

01×3 −1
⎡⎣ ⎤⎦X � 0, (A.2)

where BS1
i is the ellipsoidal quadratic matrix. It is assumed

that the jth unit is in the sensing area of the ith unit with the
relative distance rij � rj − ri � [xij, yij, zij]

T, and the posi-
tion error ellipsoid of the jth unit in S1 frame can be
expressed as

XTBS1
j X � XT T−1

1􏼐 􏼑
T Aj

rr 03×1

01×3 −1
⎡⎣ ⎤⎦T−1

1 X � 0, (A.3)
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Figure 17: Curves of trajectory deviations under TEPM and RLPST
in the scenario of members following a flight path.
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Figure 18: Curve of cost line along with learning times in the
scenario of members following a flight path.

Table 3: Time cost and iteration times for the simulated scenarios.

Scenario Time cost
(unit: s)

Iteration
times

Adding members into a satellite
cluster 131.96 55

Members following a flight path 69.44 68
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where T1 is the translation matrix, which is expressed as

T1 �

1 0 0 xij

0 1 0 yij

0 0 1 zij

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)

Because Ai
rr is the positive definite symmetric, there

exists an orthogonal matrix Q satisfying the following
condition:

Ai
rr � QTΛQ �

Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/a2 0 0

0 1/b2 0

0 0 1/c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(A.5)

where 1/a, 1/b, and 1/c are the matrix eigenvalues of Arr.
Besides, the following condition is satisfied:

a≤ b≤ c. (A.6)

+erefore, we have

QAi
rrQ

T
� Λ. (A.7)

+us, the transformation matrix, T2, which is applied to
align the axes, can be obtained:

T2 �

Q11 Q21 Q31 0

Q12 Q22 Q32 0

Q13 Q23 Q33 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.8)

Besides, the transformation matrix T3 is defined as
follows:

T3 �

1 0 0 0

0 b/ba 0 0

0 0 c/ca 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.9)

+e S2 frame is defined as the coordinate system for axis
alignment of the ith unit. +erefore, the error ellipsoids of
the ith unit and the jth unit in S2 frame can be expressed as

XTBS2
i X � XT T3( 􏼁

T T−1
2􏼐 􏼑

T
BS1

i T−1
2 T3X � 0,

XTBS2
j X � XT T3( 􏼁

T T−1
2􏼐 􏼑

T
BS1

j T−1
2 T3X � 0.

(A.10)

After the transformation process, the distance vector
from the jth unit to the ith unit is expressed as

􏽥rij �

1 0 0

0 b/ba 0

0 0 c/ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦rij � T, rij

� 􏽥xij, 􏽥yij, 􏽥zij􏽨 􏽩
T
,

(A.11)

where Ttr is the matrix for distance transformation. For
satisfying the condition which is applicable for the location
judging algebraic criterion, the origin of the frame needs to
be translated to the nominal mass point of the jth unit. +e
translation matrix is denoted as T4, which is expressed as
follows:

T4 �

1 0 0 −􏽥xij

0 1 0 −􏽥yij

0 0 1 −􏽥zij

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.12)

After the translation process, the frame comes to S3,
where the error ellipsoids of the ith unit and the jth unit are
expressed as follows:

XTBS3
i X � XT T−1

4􏼐 􏼑
T
BS2

i T−1
4 X � 0,

XTBS3
j X � XT T−1

4􏼐 􏼑
T
BS2

j T
−1
4 X � 0.

(A.13)

For aligning the axes, the rotation matrix is denoted as
T5. +us, we have

XTBS4
i X � XT T−1

5􏼐 􏼑
T
BS3

i T
−1
5 X � x − d1( 􏼁

2
+ y − d2( 􏼁

2

+ z − d2( 􏼁
2

− 1 � 0,

XTBS4
j X � XT T−1

5􏼐 􏼑
T
BS3

j T
−1
5 X �

x2

a2 +
y2

b2
+

z2

c2
− 1 � 0,

(A.14)

where the frame comes to S4.

Data Availability

+e data, such as number of cluster members: N, simu-
lation time: T, initial state of No. 1 satellite: x10, initial
state of No. 2 satellite: x20, initial state of No. 3 satellite:
x30, initial state of No. 4 satellite: x40, discount factor: c,
separate factor: ε, learning rate: α, learning rate: β, factor
for calculating Cost: mr, factor for calculating Cost: ma,
reference orbit, matrix of error ellipsoid: A, matrix of
induction area: M, deviation degree: σ, matching rate: ηm,
sensing rate: ηs, degree of flight quality: Cost, time cost,
iteration times, trajectories under TEPM, and trajectories
under RLPST, used to support the findings of this study
are included within the article.
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