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Abstract—This paper studies how to control the output of
a class of nonlinear discrete-time systems, to completely track
any given bounded reference trajectories in finite time. For this
problem, we develop two kinds of constructive control methods
for the total output case and the partial output case, respec-
tively. For each case, the first kind of methods can design the
time instant after which the complete trajectory tracking is
accomplished, but cannot guarantee the monotonic decrease of
the norm of the tracking error before that time instant; the
other kind of methods not only can determine when the out-
put trajectory coincides with the reference trajectory, but also
can make the norm of the tracking error decrease monotoni-
cally before that time instant. For the partial output case, the
proposed control methods can guarantee that the rest part of
the system output is bounded for all the time. These control
methods are feasible no matter whether the dynamic models
of these systems are smooth or nonsmooth. Then, the simula-
tion and experiment results prove the feasibility of the proposed
methods.

Index Terms—Bounded reference trajectories, finite-time tra-
jectory tracking, nonlinear discrete-time systems, partial output
case, total output case.

I. INTRODUCTION

IN CONTROL theory and control engineering, trajectory
tracking is one of the most important subjects to be exten-

sively studied for linear and nonlinear systems, continuous-
time and discrete-time systems, deterministic and uncertain
systems, as well as delay and nondelay systems [1]–[5].
Trajectory tracking problems so far been investigated can
be divided into two categories: 1) the asymptotic trajectory
tracking problems [1], [6]–[9] and 2) the finite-time trajec-
tory tracking problems [3], [10], [11]. Generally speaking,
the asymptotic trajectory tracking is necessary to be stable in
the sense of Lyapunov [7]–[9]. This means that the norm of the
tracking error decreases monotonically as time increases, and
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the system state/output will converge to the reference trajec-
tory as the time tends to infinity. Besides, it is often assumed
that the system model is smooth [1], [12], [13], such as
the continuous partial derivatives. People usually prescribe an
accuracy (often referred to as the maximum tolerable tracking
error), and consider that the trajectory tracking is accomplished
when the accuracy requirement is satisfied.

The finite-time trajectory tracking, on the other hand, is
quite a different problem. It is concerned with how to design
a time instant when the trajectory tracking is accomplished,
and how to make the tracking error keep zero from then on.
In this sense, the finite-time trajectory tracking is superior to
the asymptotic trajectory tracking, since it has higher track-
ing precision and faster convergence rate, and can determine
the exact time instant when the trajectory tracking is accom-
plished. With the development of science and technology,
the requirements on system control accuracy are increasing.
Because of the resource limitation or the standard of work-
manship, etc., how to make the system state, especially the
system output completely track a given reference trajectory
in finite time, has become an important control problem. For
example, in the areas of shipbuilding and car manufacturing,
it has become very common that the industrial robot precisely
cuts materials along the preset edge or welds workpieces along
the preset welding seam [14], [15]. When launching aircraft,
the aircraft is supposed to enter the predesigned trajectory
in finite time, and subsequently, flies along this trajectory
precisely [16], [17]. In astronomical observation area, the atti-
tude precision and the flying angle along the predesigned
trajectory of spacecrafts (such as Hubble Space Telescope),
will directly affect the observation of the stars [18], [19].
Therefore, the study and investigation on finite-time trajectory
tracking have both theoretical significance and practical value.

Up to now, most of the existing works on finite-time tra-
jectory tracking focus on the control design problem, and
some typical control schemes have been developed. Methods
studied include the backstepping methods [4], [20], the
sliding mode methods [10], [21], and the neural network
methods [2], [10], [22]. Of course, the superiority of finite-
time trajectory tracking is based on more strict conditions.
Consequently, the above control methods have their limita-
tions: they can only deal with some particular systems which
have special structures or smooth dynamic characteristics,
but cannot control a general class of systems or nonsmooth
systems; they can drive the system state/output to track some
particular trajectories, but not to track arbitrary bounded tra-
jectories; they can accomplish the complete trajectory tracking
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in finite time, but cannot determine the exact time instant when
the state/output trajectory begins to coincide with the reference
trajectory; most of them are concerned with continuous-time
systems, which are not convenient for computer modeling. In
view of this situation, further researches need to be conducted,
and we have published an article on finite-time trajectory
tracking of a class of continuous-time systems [3].

In this paper, we will conduct research on the finite-time
output trajectory tracking control of a class of nonlinear
discrete-time systems, whose dynamic models can be either
smooth or nonsmooth. We will develop control methods in a
constructive way, for both the total output case and the partial
output case of these systems. Comparing with the previous
approaches, our control methods have some advantages: first,
they are not limited to particular systems, but can control a
general class of nonlinear discrete-time systems; second, they
do not require the special structure or the smooth dynamic
assumptions of the system model; third, they can be applied
to any bounded reference trajectories; and finally, they can
arbitrarily design the time instant after which the complete
trajectory tracking is accomplished, and some of them even
can make the tracking error decrease monotonically before
that time instant. These advantages are the main contribution
of this paper.

The remainder of this paper is organized as follows.
Section II studies how to control the total system output to
completely track the given bounded reference trajectory after
a predesigned time instant, and how to make the norm of the
tracking error decrease monotonically before that time instant.
Section III studies how to control a part of the system out-
put to completely track the given bounded reference trajectory
in finite time while keeping the other part bounded all the
time, and also studies how to make the norm of the track-
ing error decrease monotonically before the trajectory tracking
is accomplished. Section IV demonstrates the feasibility and
validity of the proposed control methods by simulation and
experiment. In particular, a voice coil motor (VCM) actuated
servo gantry system is employed as the experimental sub-
ject, where all the data are obtained from the real control
experiment. Finally, Section V draws the conclusions of this
paper.

II. FINITE-TIME TOTAL OUTPUT TRAJECTORY

TRACKING CONTROL

Consider the following nonlinear discrete-time system:

y(k + 1) = f (y(k)) + B(y(k))u(k) (1)

where u(k) ∈ R
m and y(k) ∈ R

n with m ≤ n, are the input
and the output, respectively; integer k ≥ 0 is the tracking
instant. Suppose that the mathematical expressions of f (y(k))
and B(y(k)) are both precisely known; nonlinear function
f : R

n → R
n is piecewise continuous in y(k), and f (0) = 0;

B : R
n → R

n×m is continuous in y(k).
In this section, for the case of m = n, we study how to

control the total output of system (1) to completely track any
given bounded trajectory in finite time. Define the set of the

reference trajectories

S1 �
{
g(k)|k ≥ 0, g(k) ∈ R

n, ‖g(k)‖ ≤ α < ∞}
(2)

g(t) is continuous in t ∈ R
+ and g(k) is the discrete value of

g(t) at t = kT , where T > 0 is the sampling period. In this
way, 0 < α < ∞ is the boundary of any g(k) ∈ S1. Moreover,
we suppose that each given g(k) is known for all k ≥ 0.

Assumption 1: For system (1), assume that ∀y(k) ∈ R
n,

Rank[B(y(k))] = n.
Assumption 1 is made to ensure that we can arbitrarily con-

trol the output y(k) of system (1). To facilitate discussion, we
suppose that ‖y(0)‖ ≤ α for any given y(0); otherwise, we
may first control the output to satisfy this initial condition,
and then discuss the trajectory tracking problem.

Theorem 1: Suppose that system (1) satisfies Assumption 1.
Then, for any given y(0) and g(k) ∈ S1, the output y(k) of
system (1) can completely track g(k) in finite time.

Proof: If y(0) = g(0), design the control input as

u(k) = B−1(y(k))
[
g(k + 1) − f (y(k))

]
(k ≥ 0). (3)

From (1) and (3), we can see that y(k) = g(k) (k ≥ 0). Thus,
the system output y(k) completely tracks g(k) instantaneously
by using control input (3).

If y(0) 
= g(0), predesign a time instant M ≥ 1 when the
complete trajectory tracking is accomplished. Then, we let

u(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B−1(y(k))
[

k+1
M g(k + 1) − f (y(k))

]

(0 ≤ k ≤ M − 1)

B−1(y(k))
[
g(k + 1) − f (y(k))

]

(k ≥ M).

(4)

From (1) and (4), when k = M − 1, y(k + 1) = y(M) =
[(k + 1)/M)g(k + 1) = g(M); and when k ≥ M, y(k + 1) =
g(k + 1). Therefore, y(k) completely tracks g(k) from k = M
on by using control input (4).

In summary, the output y(k) of system (1) can completely
track g(k) ∈ S1 in finite time.

Note that (3) and (4) are ideal controllers under the assump-
tion that the nonlinear function f (y(k)) is precisely known.
The following control methods proposed in this paper are also
based on this assumption.

Although M can be arbitrarily predesigned, in practical
application, it is better to choose M according to the initial
tracking error. If ‖y(0) − g(0)‖ is large, we should choose a
large M, such that y(k) will not vary its value dramatically in
the initial tracking stage, which might cause problems; other-
wise, we may choose a small M. Besides, if y(0) 
= g(0),
control input (4) can determine when y(k) begins to coin-
cide with g(k) by choosing proper integer M, which thus is a
highlight of our control method.

From the above proof, we can see that when y(0) = g(0),
‖y(k)‖ = ‖g(k)‖ ≤ α for all k ≥ 0. When y(0) 
= g(0),
‖y(k)‖ ≤ (k/M)α for 1 ≤ k ≤ M, and ‖y(k)‖ ≤ α, for k ≥
M +1. Since we have supposed that ‖y(0)‖ ≤ α for any given
y(0), then ‖y(k)‖ ≤ α for all k ≥ 0.

In the above discussion, though not specifically mentioned,
the origin of system (1) is usually supposed to be asymptoti-
cally stable. Otherwise, according to Assumption 1, system (1)
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is stabilizable, we can stabilize it first and then study the track-
ing problem. Note that whether control inputs (3) and (4) are
bounded, is not discussed. But, the control input should always
be constrained in engineering applications. Suppose

sup
y(k)∈Rn

{∥∥∥B−1(y(k))
∥∥∥
}

= Mb < ∞. Then if y(0) = g(0)

from (2) and (3), the control input should satisfy

‖u(k)‖ ≤
∥∥∥B−1(y(k))

∥∥∥
[‖g(k + 1)‖ + ‖ f (y(k))‖]

≤ Mb
[
α + ‖ f (y(k))‖].

For system (1), when the origin is asymptotically stable, we
have ∀k ≥ 0, ‖ f (y(k))‖ < ‖y(k)‖. Thus

‖u(k)‖ < Mb
[
α + ‖y(k)‖] ≤ 2αMb < ∞

which indicates the boundary of control input (3) for finite-
time trajectory tracking. For the case of y(0) 
= g(0), we can
still get the same result, which is omitted here.

It is worth mentioning that the above control method cannot
guarantee the monotonic decrease of the tracking error for all
0 ≤ k ≤ (M − 1). As a consequence, this may cause troubles
in some particular situations. To overcome this problem, we
give an additional assumption below.

Assumption 2: For system (1), ∀y(k), ȳ(k) ∈ R
n, assume

that f (·) satisfies ‖ f (y(k))−f (ȳ(k))‖ ≤ Lf ‖y(k)− ȳ(k)‖, where
0 < Lf < 1 is a constant number.

Assumption 2 is made to ensure that ‖y(k)−g(k)‖ decreases
monotonically before y(k) begins to coincide with g(k). Before
continuing, we preset a constant number 0 < ε < ∞ that
can be designed to adjust the time instant when the complete
trajectory tracking is accomplished.

Theorem 2: Suppose that system (1) satisfies
Assumptions 1 and 2. Then, for any given y(0) and
g(k) ∈ S1, the output y(k) of system (1) can completely track
g(k) in finite time. In addition, for given constant number
ε > 0, when ‖y(0) − g(0)‖ > ε, there must exist a control
input which can make ‖y(k) − g(k)‖ decrease monotonically
before the complete trajectory tracking is accomplished.

Proof: For given constant number ε > 0 and the case of
‖y(0)−g(0)‖ ≤ ε, if Assumption 1 is satisfied, we can still use
control input (3), which easily leads to y(k) = g(k) (k ≥ 1).
In particular, when y(0) = g(0), the system output y(k)
completely tracks g(k) instantaneously.

When ‖y(0) − g(0)‖ > ε, let

η = logLf

ε

‖y(0) − g(0)‖ , Mη = [η] + 1 (5)

where [η] denotes the largest integer less than or equal to η.
Then, we design the control input as

u(k) =

⎧
⎪⎪⎨

⎪⎪⎩

B−1(y(k))
[
g(k + 1) − f (g(k))

]
(
0 ≤ k ≤ Mη − 1

)

B−1(y(k))
[
g(k + 1) − f (y(k))

]
(
k ≥ Mη

)
.

(6)

From (1) and (6), for 0 ≤ k ≤ (Mη − 1), the system output is

y(k + 1) = g(k + 1) + [
f (y(k)) − f (g(k))

]
.

By repeatedly using the inequality in Assumption 2, we have

‖y(k + 1) − g(k + 1)‖ ≤ Lf ‖y(k) − g(k)‖
...

≤ Lk+1
f ‖y(0) − g(0)‖. (7)

Since 0 < Lf < 1, ‖y(k + 1) − g(k + 1)‖ < ‖y(k) − g(k)‖.
Therefore, ‖y(k)−g(k)‖ decreases monotonically for each 0 ≤
k ≤ (Mη − 1). Then, it is reasonable to suppose that

∥∥y
(
Mη

) − g
(
Mη

)∥∥ ≤ L
Mη

f ‖y(0) − g(0)‖ ≤ ε.

Let Lη
f ‖y(0)−g(0)‖ = ε. Then, η = logLf

(ε/[(‖y(0)−g(0)‖)].
Let Mη = [η] + 1, and then we can get (5).

From (1) and (6), when k ≥ (Mη + 1), y(k) = g(k). But, it
is not certain whether y(Mη) = g(Mη). So, we can say with
certainty that y(k) completely tracks g(k) after k = Mη.

In summary, the output y(k) of system (1) can completely
track any given g(k) ∈ S1 in finite time.

It is the same as we discussed after the proof of Theorem 1,
that control input (6) should also be bounded for bounded ref-
erence trajectory. Owing to the limitation of space, we would
not go into details here.

The contribution of control method (6) is that it not only can
determine the time instant k = Mη after which y(k) completely
tracks g(k), but also can make ‖y(k) − g(k)‖ decrease mono-
tonically when 0 ≤ k ≤ (Mη −1). Here, the constant number ε

plays a role as the threshold in determining the control switch-
ing point. When ‖y(0) − g(0)‖ > ε, since 0 < Lf < 1, η > 0.
If we want y(k) to completely track g(k) in a shorter period
of time, we should choose a larger ε in advance; otherwise,
we should choose a smaller ε beforehand.

Remark 1: In practice, interference is often inevitable. If
system (1) is interfered as

y(k + 1) = f (y(k)) + B(y(k))u(k) + v(k) (k ≥ 0) (8)

and if the interference v(k) ∈ R
n can be precisely identified in

a limited period of time, it can be considered known. In this
circumstance, control input (3) is rewritten as

u(k) = B−1(y(k))
[
g(k + 1) − f (y(k)) − v(k)

]
. (9)

Control inputs (4) and (6) can be dealt with similarly, and
our control methods are still feasible for finite-time trajectory
tracking. Otherwise, if v(k) cannot be precisely identified or is
random, these methods cannot accomplish finite-time complete
trajectory tracking.

Moreover, from the proofs of Theorems 1 and 2, we can see
that system (1) is not required to be smooth, but obviously the
proposed control methods are still feasible when the system is
smooth. This obviously is another highlight of these methods.

III. FINITE-TIME PARTIAL OUTPUT TRAJECTORY

TRACKING CONTROL

In practice, the case of m < n is much more common than
the case of m = n. When m < n, if B(y(k)) ∈ R

n×m has
full column rank, then system (1) can be transformed into the
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following form through nonsingular transformation:
{

yI(k + 1) = fI(y(k))
yII(k + 1) = fII(y(k)) + G(y(k))u(k)

(k ≥ 0) (10)

where u(k) ∈ R
m and y(k) ∈ R

n are the input and the output
of system (10), respectively. In (10), we denote

yI(k) = [
y1(k), y2(k), . . . , yn−m(k)

]T

yII(k) = [
yn−m+1(k), yn−m+2(k), . . . , yn(k)

]T

y(k) = [
yT

I (k), yT
II(k)

]T

fI(y(k)) = [
f1(y(k)), . . . , fn−m(y(k))

]T

fII(y(k)) = [
fn−m+1(y(k)), . . . , fn(y(k))

]T (11)

where fI : R
n → R

n−m, fII : R
n → R

m with fI(0) = 0 and
fII(0) = 0; fi(y(k)) (1 ≤ i ≤ n) are all piecewise continuous
in y(k); G : R

n → R
m×m is continuous in y(k). Similar to

system (1), we suppose that the mathematical expressions of
fI(y(k)), fII(y(k)), and G(y(k)) are all precisely known.

In this section, we will study how to control the partial
output yII(k) to completely track any given bounded trajec-
tory in finite time, while keeping the other partial output yI(k)
bounded. Define the set of the reference trajectories

S2 �
{
h(k)|k ≥ 0, h(k) ∈ R

m, ‖h(k)‖ ≤ β < ∞}
. (12)

h(t) is continuous with respect to t ∈ R
+ and h(k) is the

discrete value of h(t) at t = kT . In this way, 0 < β < ∞
is the boundary of any h(k) ∈ S2. Moreover, we suppose that
each given h(k) ∈ S2 is known for all k ≥ 0.

Assumption 3: For system (10), assume that ∀y(k) ∈ R
n:

1) ‖ fI(y(k))‖ ≤ L1‖yI(k)‖ + L2‖yII(k)‖, where 0 < L1 < 1
and 0 ≤ L2 < ∞ are constant numbers;

2) Rank[G(y(k))] = m.
1) of Assumption 3 is made to ensure the boundedness of

yI(k) and 2) of Assumption 3 is made to ensure that yII(k) can
be arbitrarily controlled. To facilitate discussion, we suppose
that ‖yII(0)‖ ≤ β for any given yII(0); otherwise, we could
control yII(k) to satisfy this condition first.

Theorem 3: Suppose that system (10) satisfies
Assumption 3. Then, for any given yI(0), yII(0) and
h(k) ∈ S2, the partial output yII(k) of system (10) can
completely track h(k) in finite time. In the mean time, the
other partial output yI(k) is bounded for all k ≥ 0.

Proof: When yII(0) = h(0), design the control input as

u(k) = G−1(y(k))
[
h(k + 1) − fII(y(k))

]
(k ≥ 0). (13)

From (10) and (13), yII(k) = h(k) (k ≥ 1). In this way, yII(k)
completely tracks h(k) instantaneously.

When yII(0) 
= h(0), predesign a time instant M ≥ 1 when
yII(k) begins to coincide with h(k). Then, we design

u(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G−1(y(k))
[

k+1
M h(k + 1) − fII(y(k))

]

(0 ≤ k ≤ M − 1)

G−1(y(k))
[
h(k + 1) − fII(y(k))

]

(k ≥ M).

(14)

From (10) and (14), when k = M − 1, yII(k + 1) = yII(M) =
h(M); and when k ≥ M, yII(k + 1) = h(k + 1). Then, yII(k)
completely tracks h(k) from k = M on.

In summary, the partial output yII(k) of system (10) can
completely track any given h(k) ∈ S2 in finite time.

Next, we prove the boundedness of yI(k). Here, we choose
the case of yII(0) 
= h(0) to demonstrate the proof. The proof
for the other case is similar, and thus is omitted here.

By repeatedly using the inequality in 1) of Assumption 3

‖yI(k + 1)‖ ≤ Lk+1
1 ‖yI(0)‖ + L2

k∑

j=0

Lk−j
1 ‖yII(j)‖. (15)

Since 0 < L1 < 1, ‖yII(0)‖ ≤ β and ‖h(k)‖ ≤ β for all k ≥ 0,
then for 0 ≤ k ≤ (M − 1), we shall have

‖yI(k + 1)‖

≤ Lk+1
1 ‖yI(0)‖ + L2Lk

1‖yII(0)‖ + L2

k∑

j=1

Lk−j
1 ‖yII(j)‖

< ‖yI(0)‖ + L2β + L2

M−1∑

j=1

j

M
‖h(j)‖

≤ ‖yI(0)‖ +
(

1 + M − 1

2

)
L2β < ∞.

From (15), for k ≥ M, the partial output yI(k) satisfies

‖yI(k + 1)‖

≤ Lk+1
1 ‖yI(0)‖ + βL2Lk

1 + βL2

M−1∑

j=1

LM−1−j
1

j

M

+ βL2

k∑

j=M

Lk−j
1

< ‖yI(0)‖ + βL2

∞∑

j=0

Lj
1

= ‖yI(0)‖ + 1

1 − L1
βL2 < ∞.

In summary, yI(k) is bounded for all k ≥ 0.
It is similar to what we discussed in Section II, that when

supy(k)∈Rn{‖G−1(y(k))‖} = Mg < ∞, the control inputs are
bounded for bounded reference trajectory.

Note that control input (14) cannot guarantee the monotonic
decrease of ‖yII(k) − h(k)‖ for all 0 ≤ k ≤ (M − 1), which is
not expected in some practical applications. To overcome this
problem, we give an additional assumption below.

Assumption 4: For system (10), assume that ∀y(k), ȳ(k) ∈
R

n, function fII : R
n → R

m satisfies

‖ fII(y(k)) − fII(ȳ(k))‖ ≤ LII‖yII(k) − ȳII(k)‖
where 0 < LII < 1 is a constant number, and ȳII(k) ∈ R

m is
in the same form of yII(k) in (11).

Assumption 4 is a lower requirement for the system dynam-
ics than Assumption 2, since it does not require yI(k) to
have the same behavior as yII(k) does in Assumption 2.
Assumption 4 is made to ensure that ‖yII(k) − h(k)‖ will
decrease monotonically before yII(k) completely tracks h(k).
As in Theorem 2, we preset a constant number 0 < δ < ∞
that can be designed to adjust the time instant after which the
two trajectories begin to coincide with each other.
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Theorem 4: Suppose that system (10) satisfies
Assumptions 3 and 4. Then, for any given yI(0), yII(0),
and h(k) ∈ S2, the partial output yII(k) can completely track
h(k) in finite time. In addition, for given constant number
δ > 0, when ‖yII(0) − h(0)‖ > δ, there must exist a control
input which can make ‖yII(k)− h(k)‖ decrease monotonically
before the trajectory tracking is accomplished. In the mean
time, the other partial output yI(k) is bounded for all k ≥ 0.

Proof: For given constant number δ > 0 and the case of
‖yII(0) − h(0)‖ ≤ δ, if 2) of Assumption 3 is satisfied, we
can still use control input (13), which leads to yII(k) = h(k)
(k ≥ 1). In particular, if yII(0) = h(0), the partial output yII(k)
can completely track h(k) instantaneously.

For the case of ‖yII(0) − h(0)‖ > δ, let

θ = logLII

δ

‖yII(0) − h(0)‖ , Mθ = [θ ] + 1

H(k) = [
0T , hT(k)

]T ∈ R
n (16)

where [θ ] denotes the largest integer less than or equal to θ .
Then, we design the control input as

u(k) =

⎧
⎪⎪⎨

⎪⎪⎩

G−1(y(k))
[
h(k + 1) − fII(H(k))

]

(0 ≤ k ≤ Mθ − 1)

G−1(y(k))
[
h(k + 1) − fII(y(k))

]

(k ≥ Mθ ).

(17)

From (10) and (17), when 0 ≤ k ≤ (Mθ − 1)

yII(k + 1) = h(k + 1) + [
fII(y(k)) − fII(H(k))

]
.

By repeatedly using the inequality in Assumption 4, we have

‖yII(k + 1) − h(k + 1)‖ ≤ LII‖yII(k) − h(k)‖
...

≤ Lk+1
II ‖yII(0) − h(0)‖. (18)

Since 0 < LII < 1, ‖yII(k + 1) − h(k + 1)‖ < ‖yII(k) − h(k)‖.
Consequently, ‖yII(k)−h(k)‖ decreases monotonically for each
0 ≤ k ≤ (Mθ − 1).

From the above discussion, it is reasonable to suppose that

‖yII(Mθ ) − h(Mθ )‖ ≤ LMθ

II ‖yII(0) − h(0)‖ ≤ δ.

Let Lθ
II‖yII(0) − h(0)‖ = δ. Then, θ =

logLII
[δ/(‖yII(0) − h(0)‖)]. Let Mθ = [θ ] + 1, and then

we get (16).
From (10) and (17), when k ≥ (Mθ + 1), yII(k) = h(k).

But, it is not certain whether yII(Mθ ) = h(Mθ ). Hence, we
can say with certainty that yII(k) completely tracks h(k) after
time instant k = Mθ .

In summary, yII(k) can completely track h(k) ∈ S2 in finite
time. The rest part is about the boundedness of yI(k), which
is similar to that part of the proof of Theorem 3, and thus is
omitted here.

The contribution of control method (17) is that it not only
can determine the time instant k = Mθ after which yII(k) com-
pletely tracks h(k), but also can make

∥∥yII(k)−h(k)
∥∥ decrease

monotonically for all 0 ≤ k ≤ (Mθ − 1). Here, the con-
stant number δ plays a role as the threshold in determining
the control switching point. When

∥∥yII(0) − h(0)
∥∥ > δ, since

0 < LII < 1, θ > 0. If we want yII(k) to completely track h(k)
faster, we should choose a larger δ in advance; otherwise, we
should choose a smaller δ beforehand.

Remark 2: Similar to what we discussed in Section II, if
system (10) is interfered as

{
yI(k + 1) = fI(y(k))
yII(k + 1) = fII(y(k)) + G(y(k))u(k) + w(k)

(19)

and if the interference w(k) ∈ R
m can be precisely identified

within limited time, the control methods proposed above are
still feasible for finite-time trajectory tracking. Take control
input (13) for example, it will be rewritten as

u(k) = G−1(y(k))
[
h(k + 1) − fII(y(k)) − w(k)

]
(20)

and control inputs (14) and (17) can be dealt with similarly.
Otherwise, if w(k) cannot be precisely identified or is random,
our control methods are no longer feasible.

In addition, no matter system (10) is smooth or nonsmooth,
the proposed control methods are applicable.

In practical engineering, there is a class of 2-D systems
which have the same structure of system (10). They represent
the dynamics of an object that moves along the preset track,
such as the linear motor systems [1], [23], etc. Their Euler
discretized models are in the following form:

{
y1(k + 1) = y1(k) + Ty2(k)
y2(k + 1) = f2(y(k)) + G(y(k))u(k)

(k ≥ 0) (21)

where u(k) ∈ R, y(k) = [y1(k), y2(k)]T ∈ R
2 (m = 1, n = 2)

are the input and output; f2 : R
2 → R is piecewise continuous

in y(k) and f2(0) = 0; G(y(k)) is continuous in y(k).
In system (21), y1(k) and y2(k) represent the position and

velocity of the moving object, respectively; and T > 0 is the
sampling period. We will study how to control y2(k) to make
y1(k) completely track a given bounded trajectory in finite
time. Define the set of reference trajectories

S3 � {q(k)|k ≥ 0, q(k) ∈ R, |q(k)| ≤ ζ < ∞}. (22)

|·| denotes the absolute value. q(t) is continuous with respect
to t ∈ R

+, and q(k) is the discrete value of q(t) at t = kT .
Then, 0 < ζ < ∞ is the boundary of any q(k) ∈ S3. We
suppose that each given q(k) ∈ S3 is known for all k ≥ 0.

Theorem 5: Suppose that in system (21), G(y(k)) 
= 0 for
all y(k) ∈ R

2. Then, for any given y1(0), y2(0), T > 0, and
q(k) ∈ S3, the partial output y1(k) of system (21) can com-
pletely track q(k) in finite time. In the mean time, the other
partial output y2(k) is bounded for all k ≥ 0.

Proof: Predesign a time instant M ≥ 3 from which on y1(k)
begins to completely track q(k), and let

γ = 2
[
q(M) − y1(0) − Ty2(0)

]

T2(M − 1)(M − 2)
. (23)

Then, we design the control input as

u(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G−1(y(k))
[
γ kT − f2(y(k))

]

(0 ≤ k ≤ M − 1)

G−1(y(k))
[

q(k+2)−q(k+1)
T − f2(y(k))

]

(k ≥ M).

(24)
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From (21) and (24), for 0 ≤ k ≤ (M − 1), y2(k + 1) = γ kT .
From (21) and (23), we can obtain

y1(M) = y1(M − 1) + Ty2(M − 1)

= y1(0) + Ty2(0) + γ T2
M−2∑

j=0

j

= y1(0) + Ty2(0) + 1

2
γ T2(M − 1)(M − 2)

= q(M). (25)

Substitute (24) into (21), for k ≥ M, we shall have

y2(k + 1) = 1

T

[
q(k + 2) − q(k + 1)

]

y1(k + 1) = q(k + 1) + [
y1(k) − q(k)

]
. (26)

Observe (25) and (26), ∀k ≥ M, y1(k) = q(k). Then, y1(k)
can completely track any given q(k) ∈ S3 from k = M on.

On the other hand, we can see that

|y2(k)| ≤ max{|y2(0)|, |γ |T(M − 1)}, (0≤ k≤ M)

|y2(k)| ≤ 1

T

[|q(k + 1)| + |q(k)|] ≤ 2

T
ζ, (k ≥ M + 1).

In summary, y2(k) is bounded for all k ≥ 0.

IV. SIMULATION AND EXPERIMENT STUDY

In this section, we will demonstrate the research results of
this paper by simulation and experiment.

A. Simulation Example of Finite-Time Total Output
Trajectory Tracking Control

For the total output case, where m = n, we present the
following simulation example to illustrate Theorems 1 and 2.

Example 1: Consider a nonlinear discrete-time system in
the form of (1), where

f (y(k)) =
[ 1

3 y2(k)
1
3 sat(y1(k) + y2(k))

]

B(y(k)) =
[

2 + cos(y1(k)) 0
−1 3

]
. (27)

In this system, m = n = 2 and sat(·) represents the satura-
tion function. Both f (y(k)) and B(y(k)) are continuous with
respect to y(k) and f (0) = 0. In addition, ∀y(k) ∈ R

2,
Rank[B(y(k))] = 2. Thus, system (27) satisfies the description
of model (1) and Assumption 1.

Based on the fact that ∀a, b ∈ R, |sat(a)− sat(b)| ≤ |a−b|,
∀y, ȳ ∈ R

2, we shall have

‖ f (y) − f (ȳ)‖2

≤ 1

9

[
(y1 − ȳ1)

2 + 2(y1 − ȳ1)(y2 − ȳ2) + 2(y2 − ȳ2)
2
]
.

Then, ∀y, ȳ ∈ R
2, ‖ f (y) − f (ȳ)‖ ≤ 0.5393‖y − ȳ‖. In the

above, we used the property that yTPy ≤ λmax(P)yTy for all
y ∈ R

n, where λmax(P) is the maximum eigenvalue of matrix

P =
[

1 1
1 2

]
. In this case, Assumption 2 is satisfied with Lf =

0.5393.

Fig. 1. Simulation of Theorem 1 with M1 = 3 and M2 = 5.

Fig. 2. Simulation of Theorem 2 with ε1 = 1.3, Mη1 = 2, ε2 = 0.4, and
Mη2 = 4.

In this example, the reference trajectory is given as

g(k) =
[

3 sin(0.1kπ)

cos(0.2kπ) exp(−0.1k)

]
(k ≥ 0). (28)

Hence, g(0) = [0, 1]T and ‖g(k)‖ ≤ √
10 for all k ≥ 0, which

satisfies the definition of S1 in (2).
For both Theorems 1 and 2, in order to explain the effects of

parameters M and ε in the corresponding control algorithms,
we will use the same initial value y(0) = [2,−2]T , such that
y(0) 
= g(0). For Theorem 1, we set M1 = 3 and M2 = 5, to
illustrate that one can arbitrarily design the time instant after
which y(k) completely tracks g(k).

With (1), (4), (27), and (28), we use MATLAB program to
simulate the performances of trajectory tracking. The simula-
tion results shown in Fig. 1 accord with Theorem 1, that y(k)
can completely track g(k) from k = 3 (k = 5) on. As we dis-
cussed after the proof of Theorem 1, control law (4) cannot
guarantee the monotonic decrease of the norm of the tracking
error for all 0 ≤ k ≤ 2 (0 ≤ k ≤ 4).

For Theorem 2, arbitrarily design ε1 = 1.3 and ε2 = 0.4,
which are both less than

∥∥y(0) − g(0)
∥∥ = 3.6056. From (5),

with Lf = 0.5393, we have η1 = 1.6521 and η2 = 3.5609. As
a result, [η1] = 1, [η2] = 3, Mη1 = 2, and Mη2 = 4.

We then use MATLAB program to simulate
the performances of trajectory tracking according
to (1), (6), (27), and (28). The simulation results shown
in Fig. 2 accord with Theorem 2 that control input (6) not
only can make y(k) completely track g(k) after the time
instant Mη1 = 2 (Mη2 = 4), but also can make ‖y(k) − g(k)‖
decrease monotonically for all 0 ≤ k ≤ 1 (0 ≤ k ≤ 3).
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Fig. 3. Simulation of Theorem 3 with M1 = 3 and M2 = 5.

Besides, as we discussed after the proof of Theorem 2, that
when ‖y(0) − g(0)‖ > ε, a larger ε will bring a smaller Mη

and a faster convergence speed.

B. Simulation and Experiment Examples of Finite-Time
Partial Output Trajectory Tracking Control

For the partial output case, where m < n, we will give a
simulation example and an experiment example to illustrate
the theorems in Section III.

Example 2: For Theorems 3 and 4, consider a nonlinear
discrete-time system in the form of (10), where

fI(y(k)) = 1

3
y1(k) + y2(k), fII(y(k)) = sat(0.5y2(k))

G(y(k)) = 2 + sin(y1(k) − y2(k)). (29)

Here, m = 1 and n = 2; fI(y(k)), fII(y(k)), and G(y(k)) are
all continuous with respect to y(k) = [y1(k), y2(k)]T ∈ R

2;
fI(0) = 0 and fII(0) = 0. Therefore, system (29) satisfies the
description of model (10). Besides, ∀y, ȳ ∈ R

2, we have

‖ fI(y)‖ ≤ 1

3
|y1| + |y2|, Rank

[
G(y)

] = 1

‖ fII(y)−fII(ȳ)‖=|sat(0.5y2)−sat(0.5ȳ2)| ≤ 0.5|y2 − ȳ2|.
Then, Assumptions 3 and 4 are both satisfied, with L1 = (1/3)

and LII = 0.5. The reference trajectory is given as

h(k) = cos(0.2kπ) exp(−0.1k) (k ≥ 0). (30)

Then, h(0) = 1 and |h(k)| ≤ 1 for all k ≥ 0.
For both Theorems 3 and 4, in order to explain the effects of

M and δ in the corresponding control algorithms, we will use
the same initial value y(0) = [2,−2]T , such that y2(0) 
= h(0).
For Theorem 3, we set M1 = 3 and M2 = 5 to illustrate that
one can arbitrarily design the time instant from which on y2(k)
starts to completely track h(k) by choosing proper M.

Based on (10), (14), (29), and (30), we use MATLAB
program to simulate the performances of trajectory track-
ing. Fig. 3 shows the simulation results, which accord with
Theorem 3, that y2(k) can completely track h(k) from k = 3
(k = 5) on, and y1(k) is bounded for all k ≥ 0.

For Theorem 4, arbitrarily design δ1 = 0.1 and δ2 = 1,
which are both less than |y2(0) − h(0)| = 3. From (16), with
LII = 0.5, we have θ1 = 4.907 and θ2 = 1.585. As a result,
[θ1] = 4, [θ2] = 1, Mθ1 = 5, and Mθ2 = 2. We then use
MATLAB program to simulate the performances of trajectory
tracking according to (10), (17), (29), and (30).

Fig. 4. Simulation of Theorem 4 with δ1 = 0.1, Mθ1 = 5, δ2 = 1, and
Mθ2 = 2.

Fig. 5. VCM actuated servo gantry system.

The simulation results shown in Fig. 4 accord with
Theorem 4, that control input (17) not only can design the
time instant Mθ1 = 5 (Mθ2 = 2) after which y2(k) completely
tracks h(k), but also can make |y2(k) − h(k)| decrease mono-
tonically for all 0 ≤ k ≤ 4 (0 ≤ k ≤ 1). In the mean time,
y1(k) is bounded for all k ≥ 0. Besides, as we discussed after
the proof of Theorem 4, that when |y2(0)−h(0)| > δ, a larger
δ will bring a smaller Mθ and a faster convergence rate.

For Theorem 5, we will use an experiment example
to illustrate the effectiveness and practicability of control
method (24). The experimental subject is the servo gantry in
a VCM actuated servo gantry system, which is depicted in
Fig. 5. The manufacturer of this device is H2W Technologies,
Inc. and the product code is NCC10-15-023-1X.

Example 3: The dynamic model of this servo gantry is
⎧
⎨

⎩

y1(k + 1) = y1(k) + Ty2(k)
y2(k + 1) = y2(k) − KT

Mvcm
y1(k) − T

Mvcm
Ff (k)

+ TKFKu
Mvcm

u(k) − T
Mvcm

Fint(k).
(31)

In system (31), m = 1 and n = 2; y1(k) (in μm) and y2(k)
(in mm/s) represent the position and velocity of the VCM,
respectively; T = 0.1 ms is the sampling period; u(k) (in V)
is the control voltage; Ff (k) (in N) and Fint(k) (in N) are the
frictional force and interference force, respectively, where

Ff (k) =
{

Fc + (Fs − Fc) exp
[
−(y2(k)/Vs)

2
]

+ Fvy2(k)
}

× sgn(y2(k))

Fint(k) = 0.0073 sin(0.1Tkπ). (32)

Obviously, f2(y(k)) = y2(k) − (KT/Mvcm)y1(k) −
(T/Mvcm)Ff (k) is piecewise continuous in y(k) =
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TABLE I
PARAMETERS OF THE VCM ACTUATED

SERVO GANTRY SYSTEM

Fig. 6. Position trajectories with M1 = 200 and M2 = 500.

Fig. 7. Velocity trajectories with M1 = 200 and M2 = 500.

[y1(k), y2(k)]T , f2(0) = 0; and G(y(k)) = (TKFKu/Mvcm) is
a constant. Therefore, system (31) satisfies the description of
model (21).

The corresponding parameters are introduced in Table I.
As we discussed in Remark 2, since the interference

w(k) = −(T/Mvcm)Fint(k) (in mm/s) is clearly identified,
control input (24) can still be used just by adjusting it to

u(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G−1(y(k))
[
γ kT − f2(y(k)) − w(k)

]

(0 ≤ k ≤ M − 1)

G−1(y(k))
[

q(k+2)−q(k+1)
T − f2(y(k)) − w(k)

]

(k ≥ M).

In this experiment, the reference trajectory is given as

q(k) = 10 + 100 sin(8Tkπ) (k ≥ 0). (33)

Then, q(0) = 10 and |q(k)| ≤ 110 (in μm) for all k ≥ 0,
which satisfies the definition of S3 in (22).

We set y(0) = [0, 0]T and choose M1 = 200, M2 = 500 to
illustrate the effect of parameter M. Figs. 6 and 7 show the
experiment results, which basically accord with Theorem 5,
that one can arbitrarily design the time instant k = M
after which y1(k) completely tracks q(k), while keeping y2(k)
bounded for all k ≥ 0.

Note that in Fig. 6 the position y1(k) does not track q(k)
very well at the peaks and valleys. This is because the servo
gantry changes the moving direction at these places, but the
inertia and frictional force will impede the proper movements
of it. Besides, model (31) actually has modeling errors that
certainly influence the control precision.

V. CONCLUSION

The proposed control methods in this paper are applied to
make the system output (or, part of it) completely track the ref-
erence trajectory in finite time (while keeping the other part of
the system output bounded). One highlight is that they are fea-
sible no matter whether the dynamic models of the controlled
systems are smooth or nonsmooth.

The control methods proposed in the proofs of
Theorems 1, 3, and 5 can arbitrarily design the time
instant when the (partial) output trajectory and the reference
trajectory begin to coincide with each other, but they cannot
guarantee the monotonic decrease of the norm of the tracking
error before that time instant. The control methods proposed
in the proofs of Theorems 2 and 4 not only can determine
the time instant after which the complete trajectory tracking
is accomplished, but also can make the norm of the tracking
error decrease monotonically before that time instant. On
the other hand, for the partial output case, the control
methods proposed in the proofs of Theorems 3–5 can keep
the other partial output bounded for all the time. Another
highlight of these control methods is that they are designed
in a constructive way. The above advantages are the main
contribution of this paper.

In the end, the feasibility and validity of these control meth-
ods are demonstrated by simulation and practical experiment.
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