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Chapter 3 Point source and arrays of point sources

▫ Introduction

▫Power patterns and examples

▫A power theorem

▫Array of two isotropic point sources

▫Non-isotropic but similar point sources                                                  

and the principle of pattern multiplication



1. Introduction--Point source defined
• At a sufficient distance in the far field of an antenna, the
radiated fields of the antenna are transverse and the
power flow or Poynting vector (Wm-2) is radial as at the
point 0 at a distance R on the observation circle in the
figure.

• It is convenient in many analyses to assume that the
fields of the antenna are everywhere of this type.

• In fact, we may assume, by extrapolating inward along
the radii of the circle, that the waves originate at a
fictitious volumeless emitter, or point source, at the
center 0 of the observation circle.

• The actual field variation near the antenna, or "near
field", is ignored, and we describe the source of the
waves only in terms of the "far field" it produces.
Provided that our observations are made at a sufficient
distance, any antenna, regardless of its size or
complexity, can be represented in this way by a single
point source.



1. Introduction. Point source defined

• However, the phase patterns will generally differ, depending on d. If d = 0, the phase shift around the

observation circle is usually a minimum. As d is increased, the observed phase shift becomes larger.

• Although the cases considered as examples in this chapter are hypothetical, they could be

approximated by actual antennas.

• In Fig. (a), the center O of the

antenna coincides with the center

of the observation circle. If the

center of the antenna is displaced

from O, even to the extent that O

lies outside the antenna as in Fig.

(b), the distance d between the

two centers has a negligible

effect on the field patterns at the

observation circle, provided R >>

d, R >> b, and R >> .



2.Power patterns

Wr

Spherical coordinates for a point source of radiation in free space

• Let a transmitting antenna in free space be

represented by a point-source radiator

located at the origin of the coordinate as

shown in Fig. (a) and (b).

• The radiated energy streams from the source in radial
lines. The time rate of energy flow per unit area is the
Poynting vector or power density (watts per square
meter). For a point source (or in the far field of any
antenna), the Poynting vector W has only a radial
component Wr with no components in either the  or 
directions (W = W = 0). Thus, the magnitude of the
Poynting vector, or power density, is equal to the radial
component ( 𝑊 = 𝑊𝑟).



2 Power patterns

• A source that radiates energy uniformly in all directions is

an isotropic source.

• For such a source the radial component Wr of the Poynting

vector is independent of  and . A graph of Wr at a

constant radius as a function of angle is a Poynting vector,

or power-density, pattern, but is usually called a power

pattern.

• The three-dimensional power pattern

for an isotropic source is a sphere. In

two dimensions the pattern is a circle

(a cross section through the sphere).



• Although the isotropic source is convenient in
theory, it is not a physically realizable type. Even

the simplest antennas have directional properties,
i.e., they radiate more energy in some directions
than in others. In contrast to the isotropic source,
they might be called anisotropic sources.

2.Power patterns

• They can be expressed in absolute power pattern

(expressed in watts per square meter) or relative power

pattern (expressed in terms of its value in some

reference direction).

• It is customary to take the reference direction such that

Wr is a maximum. Thus, the pattern radius for relative

power is Wr /Wrm , where Wrm is the maximum value of

Wr . The maximum value of the relative power pattern

is unity.

• A pattern with a maximum of unity is also called a

normalized pattern.



• If the Poynting vector is known at all points on a sphere of radius r from a point source in a

lossless medium, the total-power radiated by the source is the integral over the surface of the

sphere of the radial component Wr of the average Poynting vector.

• Thus

 Where P = power radiated, W

 Wr = radial component of average Poynting vector, W/m-2

 ds = infinitesimal element of area of sphere= = r2 sin  d d,m2.

P=  𝑊𝑑𝑠 =  𝑊𝑟 𝑑𝑠

3. A power theorem and its application to an isotropic source



• For an isotropic source, Wr is independent of  and ,

• Which indicates that the magnitude of the Poynting vector varies inversely

as the square of the distance from a point-source radiator. This is a

statement of the well-known law for the variation of power per unit area as

a function of the distance.

P=  𝑊𝑑𝑠 =  𝑊𝑟 𝑑𝑠

𝑃 = 𝑊𝑟 𝑑𝑠 = 𝑊𝑟 × 4𝜋𝑟
2

𝑊𝑟 =
𝑃

4𝜋𝑟2

3.A power theorem and its application to an isotropic source



Radiation intensity

• The radiation intensity U is expressed in watts per unit solid angle. The radiation intensity is

independent of radius. It is power per steradian.

• Thus, the power theorem may be restated as follows:
▫ The total power radiated is given by the integral of the radiation intensity over a solid angle of 4

steradians.

• Applying the equation to an isotropic source gives

 where Uo = radiation intensity of isotropic source

𝑟2𝑊𝑟 =  𝑃 4𝜋 = 𝑈

𝑃 = 4𝜋𝑈0

3. A power theorem and its application to an isotropic source



① Source with Unidirectional Cosine Power Pattern

• A source has a cosine radiation-intensity pattern, that is,

U = Um cos  , where Um = maximum radiation intensity.

The radiation intensity U has a value only in the upper hemisphere (0  /2 and 0  2) and is zero in

the lower hemisphere. The radiation intensity is a maximum at  = 0. The space pattern is a figure of

revolution of this circle around the polar axis. Find the directivity.

Unidirectional cosine power pattern

Examples of power patterns



① Source with Unidirectional Cosine Power Pattern
• Answer:

• To find the total power radiated by the cosine source, we integrate only over the upper hemisphere.

Thus

• If the power radiated by the unidirectional cosine source is the same as for an isotropic source,

then

• Or

Unidirectional cosine power pattern

𝑃 =  

𝑈

2𝜋

 
0

𝜋
2
𝑈𝑚 cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜙 = 𝜋𝑈𝑚

𝜋𝑈𝑚 = 4𝜋𝑈0

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑈𝑚
𝑈0
= 4 = 𝐷 𝐴𝑛𝑠.

Examples of power patterns



A source has a cosine radiation-intensity pattern, that is, 

U = Um cos  , where Um = maximum radiation intensity.

The radiation intensity U has a value only in the upper hemisphere (0  /2 and 0  2) and is zero in

the lower hemisphere. The radiation intensity is a maximum at  = 0. The space pattern is a figure of

revolution of this circle around the polar axis. Find the directivity.

Examples of power patterns

• Answer:

• Thus, the maximum radiation intensity Um of the unidirectional cosine

source (in the direction  = 0) is 4 times the radiation intensity Uo from

an isotropic source radiating the same total power. The power patterns

for the two sources are compared in the following Figure for the same

total power radiated by each.



② Source with Bidirectional Cosine Power Pattern

• A source has a cosine power pattern that is bidirectional. Find the directivity. With

radiation in two hemispheres instead of one; the maximum radiation intensity is

half its value in example 1. Thus,

▫ D=4/2=2 Ans

Examples of power patterns



③Source with Sine-Squared (Doughnut)Power Pattern
• A source has a sine-squared radiation-intensity power pattern. The radiation-intensity pattern 

is given by

U = Um sin2

• The power pattern is shown in Fig. a. This type of pattern is of considerable interest because it is the

pattern produced by a short dipole coincident with the polar ( = 0) axis in Fig. a.

▫ The total power radiated is

• If P is the same as for the isotropic source,

𝑃 = 𝑈𝑚 

0

2𝜋

 
0

𝜋

𝑠𝑖𝑛3𝜃 𝑑𝜃 𝑑𝜙 =
8

3
𝜋𝑈𝑚

8

3
𝜋𝑈𝑚 = 4𝜋𝑈0

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑈𝑚
𝑈0
= 1.5 = 𝐷 𝐴𝑛𝑠.

Examples of power patterns



④ Source with Unidirectional Cosine-Squared Power Pattern
• A source with a unidirectional cosine-squared radiation-intensity power pattern is given by

U = Um cos2

• The radiation intensity has a value only in the upper hemisphere as shown in Fig. b. The 3-D or space

pattern is a figure-of-revolution of this pattern around the polar ( = 0) axis. Find the directivity.

▫ The total power radiated is

• If P is the same as for the isotropic source,

𝑃 = 𝑈𝑚 

0

2𝜋

 
0

𝜋/2

𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 =
2

3
𝜋𝑈𝑚

2

3
𝜋𝑈𝑚 = 4𝜋𝑈0

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑈𝑚
𝑈0
= 6 = 𝐷 𝐴𝑛𝑠.

Examples of power patterns



Directivities of the point source patterns are summarized as below:

• Actually, some examples can provides some valuable insights into the effect minor lobes have on

directivity or gain. Without minor lobes the gain of this antenna would be 91.4 or 19.6 dBi as compared

to a gain of 18.0 or 12.6 dBi with minor lobes. The minor lobes have large beam or solid angles

because they extend 3600 in the azimuth or  direction at large sin values ( near 900). The main lobe,

on the other hand, is at small  angles so the Pn() sin  product is small, in fact, zero at  = 00.

Examples of power patterns

pattern directivity

Unidirectional cosine 4

Bidirectional cosine 2

Sine doughnut 1.27

Sine-squared doughnut 1.5

Unidirectional cosine squared 6



• We continue with the point-source concept, but extend it to a consideration of arrays of point

sources. This approach is of great value since the pattern of any antenna can be regarded as

produced by an array of point sources. Much of the discussion will concern arrays of isotropic point

sources which may represent different kinds of antennas.

• Let us introduce the subject of arrays of point sources by considering the simplest situation, namely,

that of two isotropic point sources. As illustrations, two cases involving two isotropic point sources

are discussed.

4. Arrays of two isotropic point sources



 Case 1. Two Isotropic Point Sources of Same Amplitude and Phase

• Let the two point sources, 1 and 2, be separated by a distance d and located

symmetrically with respect to the origin of the coordinates as shown in Fig.

a. The angle  is measured counterclockwise from the positive x axis. The

origin of the coordinates is taken as the reference for phase.

• At a distant point in the direction  the field from source 1 is retarded by 1/2

dr cos, while the field from source 2 is advanced by 1/2 dr cos, where dr

is the distance between the sources expressed in radians.

𝑑𝑟 =
2𝜋𝑑

𝜆
= 𝛽𝑑

4. Arrays of two isotropic point sources



• The total field at a large distance r in the direction  is then

（1）
• where  = drcos and the amplitude of the field components at the distance r is given by Eo.

• The first term is the component of the field due to source 1 and the second term is the
component due to source 2. Then rewritten as:

（2）

• which by a trigonometric identity is

（3）

• This result may also be obtained with the aid of the vector diagram shown in Fig. b,
from which the above equation follows directly.

Relation to coordinate system of two isotropic

point sources separated by a distance d

Vector addition of the fields from two isotropic point sources 

of equal amplitude and same phase located as in (a)

𝐸 = 𝐸0𝑒
−𝑗𝜓/2 + 𝐸0𝑒

𝑗𝜓/2

𝐸 = 2𝐸0 cos
𝜓

2
= 2𝐸0 cos

𝑑𝑟
2
cos𝜙

𝐸 = 2𝐸0
𝑒𝑗  𝜓 2 + 𝑒−𝑗  𝜓 2

2

4. Arrays of two isotropic point sources



• We note in Fig. b that the phase of the total field E does not change as a function of . To normalize (3),

that is, make its maximum value unity, set 2Eo = 1. Suppose further that d is /2. Then dr = . Then

• (4)

• The field pattern of E versus  as expressed by (4) is presented in Fig.c.

Field pattern of two isotropic point sources of equal 

amplitude and same phase located as in (a)  for the 

case where the separation d=/2.

𝐸 = cos
𝜋

2
cos𝜙

The pattern is a bidirectional figure-of-eight with maxima

along the y axis. The space pattern is doughnut-shaped,

being a figure-of-revolution of this pattern around the x axis.

4. Arrays of two isotropic point sources



 Case 2. Two Isotropic Point Sources of Same Amplitude but Opposite Phase

• This case is identical with the one we have just considered except that the two sources are

in opposite phase instead of in the same phase.

• Then the total field in the direction  at a large distance r is given by

(5)

• From which

• (6)

𝐸 = 𝐸0𝑒
−𝑗𝜓/2 − 𝐸0𝑒

𝑗𝜓/2

𝐸 = 2𝑗𝐸0 𝑠𝑖𝑛
𝜓

2
= 2𝑗𝐸0 𝑠𝑖𝑛

𝑑𝑟
2
cos𝜙

4. Arrays of two isotropic point sources



• Whereas in Case 1 (3) involves the cosine of  /2, (6) for Case 2 involves the sine. Equation (6)

also includes an operator j, indicating that the phase reversal of one of the sources in Case 2

results in a 900 phase shift of the total field as compared with the total field for Case 1.

• Thus, putting 2jEo = 1 and considering the special case of d = /2, (6) becomes

• (7)𝐸 = 𝑠𝑖𝑛
𝜋

2
cos𝜙

4. Arrays of two isotropic point sources

• The field pattern given by (7) is shown in the following Figure.

The pattern is a relatively broad figure-of-eight with maximum

field in the same direction as the line joining the sources (x

axis). The space pattern is a figure-of-revolution of this pattern

around x axis. The two sources,in this case, may be described

as a simple type of “end-fire” array. In contrast to this pattern,

the in-phase point sources produce a pattern with the

maximum fieldnormal to the line joining the sources. The two

sources for this case may be described as a simple “broadside”

type of array.



 Case 3. Two Isotropic Point Sources of the Same Amplitude and In-Phase Quadrature

• Let source 1 be retarded by 45 and source 2 advanced by 45 .

• Then the total field in the direction  at a large distance r is given by

(8)

• From which

• (9)

• Thus, putting 2Eo = 1 and considering the special case of d = /2, (9) becomes

• (10)

𝐸 = 𝐸0 exp +𝑗
𝑑𝑟 cos𝜙

𝑧
+
𝜋

4
+ 𝐸0 exp −𝑗

𝑑𝑟 cos𝜙

𝑧
+
𝜋

4

𝐸 = 2𝐸0 cos
𝜋

4
+
𝑑𝑟
2
cos𝜙

𝐸 = cos
𝜋

4
+
𝜋

2
cos𝜙

4. Arrays of two isotropic point sources



• The field pattern given by (7) is shown in the following Figure.

Relative field pattern for two isotropic point sources of 

The same amplitude and in phase quadrature for the

spacing of /2. 

The source to the right leads that to the left by 90

𝜋

4
+
𝜋

2
cos𝜙𝑚 = 𝑘𝜋

For k=0,
𝜋

2
cos𝜙𝑚 = -

𝜋

4

and
ϕm=120°and 240°

The space pattern is figure-of-revolution of this pattern

around x axis. Most of the radiation is in the second and third

quadrants. It’s interesting to note that the field in the direction

=0 is the same as in the direction =180. The directions m

of maximum field are obtained by setting the argument of (9)

equal to k.

4. Arrays of two isotropic point sources



 Case 3. Two Isotropic Point Sources of the Same Amplitude and In-Phase Quadrature

• Let source 1 be retarded by 45 and source 2 advanced by 45 .

• If the special case of d = /4, (9) becomes

(11)𝐸 = cos
𝜋

4
+
𝜋

4
cos𝜙

4. Arrays of two isotropic point sources

It’s a cardioid-shaped, unidirectional pattern with 

maximum field in the negative x direction.  The 

space pattern is figure-of-revolution of this 

pattern around x axis. 



 Case 4. General case of two isotropic point sources of equal amplitude and any phase

difference

• Let us consider the any phase difference .

• The total phase difference  between the fields from source 2 and source 1 at a distant point in

the direction  is then

• Taking source 1 as the reference for phase, the positive sign indicates that source 2 is advanced in phase

by the angle . A minus would be used to indicate a phase retardation.

• If it is referred to the centerpoint of the array the phase of the field from source 1 at a distant point is given

by - /2, and that from source 2 by + /2. The total field is then,

• Normalizing it, we have the general expression for the field pattern of two isotropic sources of equal amplitude and arbitrary phase,

(11)

(13)

(12)

𝜓 = 𝑑r cos𝜙 + 𝛿

𝐸 = 𝐸0𝑒
−𝑗𝜓/2 + 𝐸0𝑒

𝑗𝜓/2 = 𝐸0 cos
𝜓

2

𝐸 = cos
𝜓

2

4. Arrays of two isotropic point sources



The word similar is here used to indicate that the variation with absolute angle  of both the

amplitude and phase of the field is the same.

The maximum amplitudes of the individual sources may be unequal. If, however, they are also

equal, the sources are not only similar but are identical.

• As an example, let us reconsider Case4 in section4, in which the sources are identical, with the modification

that both sources 1 and 2 have field patterns given by

• Substituting it to equation (12) and normalizing, it gives the field pattern of the array as 

𝐸0 = 𝐸0
′ sin𝜙

𝐸 = sin𝜙 cos
𝜓

2

𝑤ℎ𝑒𝑟𝑒 𝜓 = 𝑑𝑟 cos𝜙 + 𝛿

5. Non-isotropic but similar point sources and 

the principle of pattern multiplication



• Patterns of this type might be produced by short dipoles oriented parallel to the x axis as 

suggested in the following figure.   

• This results is the same as obtained by multiplying the pattern of the individual source (sin) 

by the pattern of the two isotropic point source (cos /2).

5. Non-isotropic but similar point sources and 

the principle of pattern multiplication



• The field pattern of an array of nonisotropic but similar point sources is the product of the pattern of the individual
source and the pattern of an array of isotropic point sources having the same locations, relative amplitudes, and
phase as the nonisotropic point sources .

The principle may be applied to arrays of any number of sources provided only that they are similar.
The individual nonisotropic source or antenna may be of finite size but can be considered as a point source situated at the point

in the antenna to which phase is referred. This point is said to be the phase center.

The above discussion of the pattern multiplication has been concerned only with the field pattern or magnitude of the
field. If the field of the nonisotropic source and the array of isotropic sources vary in phase with space angle, i.e., have a
phase pattern which is not a constant, the statement may be extended to include this more general case as follows.

• The total field pattern of an array of nonisotropic but similar source is the product of the individual source
pattern and the pattern of an array of isotropic sources each located at the phase center of the individual
source and having the same relative amplitude and phase, while total phase pattern is the sum of the phase
patterns of the individual source and the array of isotropic point sources.

5. The principle of pattern multiplication



• The total phase pattern is referred to the phase center of the array. In symbols, the total field E is then

• Where

• The patterns are expressed in above equation as a function of both polar angles to indicate that
the principle of pattern multiplication applies to space patterns as well as to the two-dimensional
cases we have been considering.

𝐸 = 𝑓 𝜃, 𝜙 𝐹  𝜃, 𝜙 𝑓𝑃 𝜃, 𝜙 + 𝐹𝑃 𝜃, 𝜙

𝑓 𝜃, 𝜙 =field pattern of individual source

𝑓𝑃 𝜃, 𝜙 =phase pattern ofindividual source

𝐹 𝜃, 𝜙 =field pattern of array of isotropic sources

𝐹𝑃 𝜃, 𝜙 =phase pattern array of isotropic sources

5. The principle of pattern multiplication



 Case 1. Assume two identical point source separated by a distance d, each source having a field
pattern given by 𝐸 = 𝐸0

′sin𝜑 as might be obtained by two short dipoles. Let d=/2, and the phase
angle =0. then the total field pattern is

• This pattern is illustrated by the following figures, as the product of the individual source pattern
shown at (a) and the array pattern as shown at (b). The pattern is sharper than it was in case1 of
section4 for the isotropic sources. In this instance, the maximum field of the individual source is in
the direction =90. which coincides with the direction of the maximum field for the array of two
isotropic sources.

case1 of section4 

𝐸 = sin𝜙 cos
𝜋

2
cos𝜙

5. The principle of pattern multiplication



 Case 2. Assume two identical point source separated by a distance d, each source having a field
pattern given by 𝐸 = 𝐸0

′𝑐𝑜𝑠𝜑 as might be obtained by two short dipoles oriented parallel to the
y axis. Let d=/2, and the phase angle =0. then the total normalized field pattern is

• In this instance, the maximum field of the individual source is in the direction( =0) of a null from
the array, while the individual source has a null in the direction ( =90) of the pattern maximum of
the array.

• The total pattern in the xy plane has four lobes with nulls at the x and y axes.

𝐸 = 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛
𝜋

2
cos𝜙

5. The principle of pattern multiplication



The above examples illustrate two applications of the principle of pattern multiplication to
arrays in which the source has a simple pattern.

However, in more general case the individual source may represent an antenna of any
complexity provided that the amplitude and phase of its field can be expressed as a function
of angle, that is to say, provided that the field pattern and the phase pattern with respect to the
phase center are known.

If only the total field pattern is desired, phase patterns need not be known provided that the
individual sources are identical.

If the arrays in the above examples are parts of still larger arrays, the smaller arrays may be
regarded as nonisotropic point sources in the larger array– another application of the principle
of pattern multiplication yielding the complete pattern.

In this way, the principle of pattern multiplication can be applied n times to find the patterns
of arrays of arrays of arrays.

5. The principle of pattern multiplication



• Conclusions
1.The radiation density and radiation intensity of a point source.

2.The directivities of the typical point source patterns.

3. Arrays of two isotropic point source of same amplitude and in/out phases, and their

field patterns.

• Questions
• How to calculate the directivity of a point source with Sine (Doughnut) power pattern?

• The principle of pattern multiplication.

• Pattern synthesis by pattern multiplication.




