Han Ouyang

Academic Titles:高精尖博士后


Date of Birth:1992-01-04

Alma Mater:中国科学院大学/国家纳米科学中心/中科院北京纳米能源与系统研究所

Degree:Doctor's Degree


Discipline:Biomedical Engineering Materials Science and Engineering Physics

Contact Information:电话:15202824803 邮箱:ouyanghan@binn.cas.cn 或 ouyanghan@buaa.edu.cn


Honors and Titles:

2019   “国科大杯”创新创业大赛,决赛 二等奖

2019   北京市优秀博士毕业生

2019   博士后创新人才计划

2017   北京市科学技术奖二等奖(9/10)

2018   博士研究生国家奖学金

2019   中国科学院优秀博士毕业生

2019   中国材料大会-医药智能材料与技术分会 青年论坛三等奖

Research Focus



Other Contact Information:

  • 邮件 :

  • Profile:

    Dr. Han Ouyang is currently an Postdoctoral research fellow of Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, (China) (website: http://shi.buaa.edu.cn/ouyanghan/en/index/38593/list/index.htm, Web of Science ResearcherID: J-5060-2017, ORCID: https://orcid.org/0000-0002-5469-8235 , Google Scholar:  https://scholar.google.com/citations?user=w7FpUcsAAAAJ&hl=zh-CN). He received his Ph.D. in Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, School of Nanoscience and Technology, University of Chinese Academy of Sciences (China) in 2019. He also is senior member of CSBME (Chinese Society of Biomedical Engineering) and senior member of CIE (The Chinese Institute of Electronics). Throughout his career, he has made contributions to developing nanoenergy and self-powered medical devices technology that are expected to change the medical electronics in the near future.

    He is known for the discovery and development of implantable nanogenerators1-4 for self-powered medical systems1-4, an promising technology for harvesting energy from the biological systems, for applications in, biomedical devices, internet of things, personal electronics. His innovations provide a revolutionary approach for obtaining biomechanical energy from body with potential to harvest potent energy from body and organ motion, aimed at solving the energy needs of the implantable and wearable medical devices.

    He showed that implantable nanogenerator and power for pacemaker, and demonstrate an implanted symbiotic pacemaker1 (SPM) based on an implantable triboelectric nanogenerator (iTENG), which successfully achieves cardiac pacing and sinus arrhythmia correction on a large animal model. Ouyang’s discovery and breakthroughs in developing nanogenerators have established the applications and technological road map for using biomechanical energy for treatment and diagnosis. It has been shown to be effective in the diagnosis and treatment of, cardiovascula1,2,4 and cancer15 nerves8 disease. He also designed method for achieving high spatial resolution cell traction force (CFT) measurement based on Si nanowires array6, 7,10, and made breakthroughs and cell mechanics research.

    Dr. Han Ouyang has already published more than 20 peer-review articles in Nature Comm., Adv. Mater., Sci.Adv.. And his papers have been cited more than 450 times. He applied 6 chinese patents, 2 PCTs. His work was highlighted by Nature Reviews Cardiology, Scientific America, New Scientist, IEEE Spectrum, The Times, MIT Technology Review and other journals.


    Funding information

    National Postdoctoral Program for Innovative Talent of China (BX20190026)  600,000

    China Postdoctoral Science Foundation (2019M660410)  80,000


    Reference and publications

    1. Ouyang, H.;  Liu, Z.; Li, N.;  Shi, B.;  Zou, Y.; Xie, F.;  Ma, Y.;  Li, Z.; Li, H.;  Zheng, Q.;  Qu, X.; Fan, Y.;  Wang, Z. L.;  Zhang, H.; Li, Z., Symbiotic cardiac pacemaker. Nature Communications 2019, 10.

    2. Ouyang, H.; Li, Z., The first technology can compete with piezoelectricity to harvest ultrasound energy for powering medical implants. Science Bulletin2019, 64 (21), 1565-1566.

    3. Ouyang, H.;  Tian, J.; Sun, G.;  Zou, Y.;  Liu, Z.; Li, H.;  Zhao, L.;  Shi, B.; Fan, Y.;  Fan, Y.;  Wang, Z. L.; Li, Z., Self-Powered Pulse Sensor for Antidiastole of Cardiovascular Disease. Adv Mater2017, 29 (40).

    4. Liu, Z.;  Ma, Y.;  Ouyang, H.;  Shi, B.; Li, N.;  Jiang, D.;  Xie, F.; Qu, D.;  Zou, Y.;  Huang, Y.; Li, H.;  Zhao, C.;  Tan, P.; Yu, M.;  Fan, Y.;  Zhang, H.; Wang, Z. L.; Li, Z., Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor. Adv Funct Mater 2019, 29 (3).

    5. Feng, H.;  Ouyang, H.;  Peng, M.; Jin, Y.;  Zhang, Y.;  Liu, Z.; Zou, Y.;  Zhao, C.;  Fan, Y.; Zhai, J.;  Wang, Z. L.; Li, Z., Assessment of extracellular matrix modulation of cell traction force by using silicon nanowire array. Nano Energy 2018, 50, 504-512.

    6. Li, H.;  Ouyang, H.;  Yu, M.; Wu, N.;  Wang, X.;  Jiang, W.; Liu, Z.;  Tian, J.;  Jin, Y.; Feng, H.;  Fan, Y.; Li, Z., Thermo-Driven Evaporation Self-Assembly and Dynamic Analysis of Homocentric Carbon Nanotube Rings. Small 2017, 13 (8).

    7. Zou, Y.;  Tan, P.;  Shi, B.; Ouyang, H.;  Jiang, D.;  Liu, Z.; Li, H.;  Yu, M.;  Wang, C.; Qu, X.;  Zhao, L.;  Fan, Y.; Wang, Z. L.; Li, Z., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications 2019, 10.

    8. Zheng, Q.;  Zou, Y.;  Zhang, Y.; Liu, Z.;  Shi, B.;  Wang, X.; Jin, Y.;  Ouyang, H.;  Li, Z.; Wang, Z. L., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances 2016, 2 (3).

    9. Jiang, W.;  Li, H.;  Liu, Z.; Li, Z.;  Tian, J.;  Shi, B.; Zou, Y.;  Ouyang, H.;  Zhao, C.; Zhao, L.;  Sun, R.;  Zheng, H.; Fan, Y.;  Wang, Z. L.; Li, Z., Fully Bioabsorbable Natural-Materials-Based Triboelectric Nanogenerators. Adv Mater 2018, 30 (32).

    10. Jin, Y.;  Zhang, Y.;  Ouyang, H.;  Peng, M.; Zhai, J.; Li, Z., Quantification of Cell Traction Force of Osteoblast Cells Using Si Nanopillar-Based Mechanical Sensor. Sensors and Materials2015, 27 (11), 1071-1077.

    11. Li, H.;  Zhao, C.;  Wang, X.; Meng, J.;  Zou, Y.;  Noreen, S.;  Zhao, L.; Liu, Z.;  Ouyang, H.;  Tan, P.; Yu, M.;  Fan, Y.;  Wang, Z. L.; Li, Z., Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics. Advanced Science 2019, 6 (6).

    12. Li, Z.;  Feng, H.;  Zheng, Q.; Li, H.;  Zhao, C.;  Ouyang, H.;  Noreen, S.; Yu, M.;  Su, F.;  Liu, R.; Li, L.;  Wang, Z. L.; Li, Z., Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy 2018, 54, 390-399.

    13. Liu, Z.;  Zhang, S.;  Jin, Y. M.; Ouyang, H.;  Zou, Y.;  Wang, X. X.; Xie, L. X.; Li, Z., Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semiconductor Science and Technology 2017, 32 (6).

    14. Shi, B.; Liu, Z.;  Zheng, Q.;  Meng, J.; Ouyang, H.;  Zou, Y.;  Jiang, D.; Qu, X.;  Yu, M.;  Zhao, L.; Fan, Y.;  Wang, Z. L.; Li, Z., Body-Integrated Self-Powered System for Wearable and Implantable Applications. Acs Nano 2019, 13 (5), 6017-6024.

    15. Tan, P.;  Zheng, Q.;  Zou, Y.;  Shi, B.; Jiang, D.;  Qu, X.;  Ouyang, H.;  Zhao, C.; Cao, Y.;  Fan, Y.;  Wang, Z. L.; Li, Z., A Battery-Like Self-Charge Universal Module for Motional Energy Harvest. Advanced Energy Materials 2019, 9 (36).

    16. Tian, J.;  Feng, H.;  Yan, L.; Yu, M.;  Ouyang, H.;  Li, H.; Jiang, W.;  Jin, Y.;  Zhu, G.; Li, Z.; Wang, Z. L., A self-powered sterilization system with both instant and sustainable antibacterial ability. Nano Energy 2017, 36, 241-249.

    17. Tian, J.;  Shi, R.;  Liu, Z.; Ouyang, H.;  Yu, M.;  Zhao, C.; Zou, Y.;  Jiang, D.;  Zhang, J.; Li, Z., Self-powered implantable electrical stimulator for osteoblasts' proliferation and differentiation. Nano Energy 2019, 59, 705-714.

    18. Zhang, X.;  Yu, M.;  Ma, Z.; Ouyang, H.;  Zou, Y.;  Zhang, S. L.; Niu, H.;  Pan, X.;  Xu, M.; Li, Z.; Wang, Z. L., Self-Powered Distributed Water Level Sensors Based on Liquid-Solid Triboelectric Nanogenerators for Ship Draft Detecting. Adv Funct Mater 2019, 29 (41).

    19. Zhao, C.;  Feng, H.;  Zhang, L.; Li, Z.;  Zou, Y.;  Tan, P.; Ouyang, H.;  Jiang, D.;  Yu, M.;  Wang, C.; Li, H.;  Xu, L.;  Wei, W.; Li, Z., Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Adv Funct Mater 2019, 29 (41).

    20. Zhao, L.;  Zheng, Q.;  Ouyang, H.;  Li, H.; Yan, L.;  Shi, B.; Li, Z., A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 2016, 28, 172-178.

    21. Zhao, X. J.;  Tian, J. J.;  Kuang, S. Y.; Ouyang, H.;  Yan, L.;  Wang, Z. L.; Li, Z.; Zhu, G., Biocide-Free Antifouling on Insulating Surface by Wave-Driven Triboelectrification-Induced Potential Oscillation. Advanced Materials Interfaces 2016, 3 (17).

    22. Zheng, Q.;  Jin, Y.;  Liu, Z.; Ouyang, H.;  Li, H.;  Shi, B.; Jiang, W.;  Zhang, H.;  Li, Z.; Wang, Z. L., Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment. Acs Applied Materials & Interfaces 2016, 8 (40), 26697-26703.

    23. Zou, Y.;  Feng, H.;  Ouyang, H.;  Jin, Y.; Yu, M.;  Liu, Z.; Li, Z., The modulation effect of the convexity of silicon topological nanostructures on the growth of mesenchymal stem cells. Rsc Advances 2017, 7 (28), 16977-16983.